These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 26855197)
1. A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Jeschke V; Gershenzon J; Vassão DG Insect Biochem Mol Biol; 2016 Apr; 71():37-48. PubMed ID: 26855197 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Schramm K; Vassão DG; Reichelt M; Gershenzon J; Wittstock U Insect Biochem Mol Biol; 2012 Mar; 42(3):174-82. PubMed ID: 22193392 [TBL] [Abstract][Full Text] [Related]
3. How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism. Jeschke V; Kearney EE; Schramm K; Kunert G; Shekhov A; Gershenzon J; Vassão DG Front Plant Sci; 2017; 8():1995. PubMed ID: 29209354 [TBL] [Abstract][Full Text] [Related]
4. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. Burow M; Müller R; Gershenzon J; Wittstock U J Chem Ecol; 2006 Nov; 32(11):2333-49. PubMed ID: 17061170 [TBL] [Abstract][Full Text] [Related]
5. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Müller C; van Loon J; Ruschioni S; De Nicola GR; Olsen CE; Iori R; Agerbirk N Phytochemistry; 2015 Oct; 118():139-48. PubMed ID: 26318325 [TBL] [Abstract][Full Text] [Related]
6. Spodoptera littoralis detoxifies neurotoxic 3-nitropropanoic acid by conjugation with amino acids. Novoselov A; Becker T; Pauls G; von Reuß SH; Boland W Insect Biochem Mol Biol; 2015 Aug; 63():97-103. PubMed ID: 26092560 [TBL] [Abstract][Full Text] [Related]
7. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Winde I; Wittstock U Phytochemistry; 2011 Sep; 72(13):1566-75. PubMed ID: 21316065 [TBL] [Abstract][Full Text] [Related]
8. Role of glutathione in the accumulation of anticarcinogenic isothiocyanates and their glutathione conjugates by murine hepatoma cells. Zhang Y Carcinogenesis; 2000 Jun; 21(6):1175-82. PubMed ID: 10837007 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanism of rapid cellular accumulation of anticarcinogenic isothiocyanates. Zhang Y Carcinogenesis; 2001 Mar; 22(3):425-31. PubMed ID: 11238182 [TBL] [Abstract][Full Text] [Related]
10. Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of Phase 2 detoxification enzymes. Ye L; Zhang Y Carcinogenesis; 2001 Dec; 22(12):1987-92. PubMed ID: 11751429 [TBL] [Abstract][Full Text] [Related]
11. Characterization of products from the reaction of glucosinolate-derived isothiocyanates with cysteine and lysine derivatives formed in either model systems or broccoli sprouts. Hanschen FS; Brüggemann N; Brodehl A; Mewis I; Schreiner M; Rohn S; Kroh LW J Agric Food Chem; 2012 Aug; 60(31):7735-45. PubMed ID: 22794085 [TBL] [Abstract][Full Text] [Related]
12. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Schlaeppi K; Bodenhausen N; Buchala A; Mauch F; Reymond P Plant J; 2008 Sep; 55(5):774-86. PubMed ID: 18466300 [TBL] [Abstract][Full Text] [Related]
13. One Pathway Is Not Enough: The Cabbage Stem Flea Beetle Beran F; Sporer T; Paetz C; Ahn SJ; Betzin F; Kunert G; Shekhov A; Vassão DG; Bartram S; Lorenz S; Reichelt M Front Plant Sci; 2018; 9():1754. PubMed ID: 30581445 [TBL] [Abstract][Full Text] [Related]
14. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Friedrichs J; Schweiger R; Geisler S; Mix A; Wittstock U; Müller C Insect Biochem Mol Biol; 2020 Sep; 124():103431. PubMed ID: 32653632 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of Isothiocyanate Detoxification in Larvae of Two Belowground Herbivores, Sontowski R; Guyomar C; Poeschl Y; Weinhold A; van Dam NM; Vassão DG Front Physiol; 2022; 13():874527. PubMed ID: 35574438 [TBL] [Abstract][Full Text] [Related]
16. The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Chen J; Ullah C; Reichelt M; Beran F; Yang ZL; Gershenzon J; Hammerbacher A; Vassão DG Nat Commun; 2020 Jun; 11(1):3090. PubMed ID: 32555161 [TBL] [Abstract][Full Text] [Related]
17. The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Liu XL; Zhang J; Yan Q; Miao CL; Han WK; Hou W; Yang K; Hansson BS; Peng YC; Guo JM; Xu H; Wang CZ; Dong SL; Knaden M Curr Biol; 2020 Nov; 30(22):4476-4482.e5. PubMed ID: 32916118 [TBL] [Abstract][Full Text] [Related]
18. Induction of quinone reductase by sulforaphane and sulforaphane N-acetylcysteine conjugate in murine hepatoma cells. Hwang ES; Jeffery EH J Med Food; 2005; 8(2):198-203. PubMed ID: 16117612 [TBL] [Abstract][Full Text] [Related]
19. Cellular accumulation of dietary anticarcinogenic isothiocyanates is followed by transporter-mediated export as dithiocarbamates. Callaway EC; Zhang Y; Chew W; Chow HH Cancer Lett; 2004 Feb; 204(1):23-31. PubMed ID: 14744531 [TBL] [Abstract][Full Text] [Related]