BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26855319)

  • 1. Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet.
    Hockl PF; Wolosiuk A; Pérez-Sáez JM; Bordoni AV; Croci DO; Toum-Terrones Y; Soler-Illia GJ; Rabinovich GA
    Pharmacol Res; 2016 Jul; 109():45-54. PubMed ID: 26855319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview.
    Salatino M; Rabinovich GA
    Methods Mol Biol; 2011; 677():355-74. PubMed ID: 20941621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma.
    Ho WL; Hsu WM; Huang MC; Kadomatsu K; Nakagawara A
    J Hematol Oncol; 2016 Sep; 9(1):100. PubMed ID: 27686492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosylation characteristics of colorectal cancer.
    Holst S; Wuhrer M; Rombouts Y
    Adv Cancer Res; 2015; 126():203-56. PubMed ID: 25727149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms.
    Davicino RC; Eliçabe RJ; Di Genaro MS; Rabinovich GA
    Int Immunopharmacol; 2011 Oct; 11(10):1457-63. PubMed ID: 21600310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycobiology simplified: diverse roles of glycan recognition in inflammation.
    Schnaar RL
    J Leukoc Biol; 2016 Jun; 99(6):825-38. PubMed ID: 27004978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients.
    Saeland E; Belo AI; Mongera S; van Die I; Meijer GA; van Kooyk Y
    Int J Cancer; 2012 Jul; 131(1):117-28. PubMed ID: 21823122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bitter Sweet Symphony: Immune Responses to Altered O-glycan Epitopes in Cancer.
    Cornelissen LA; Van Vliet SJ
    Biomolecules; 2016 May; 6(2):. PubMed ID: 27153100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma.
    Pace A; Scirocchi F; Napoletano C; Zizzari IG; D'Angelo L; Santoro A; Nuti M; Rahimi H; Rughetti A
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35682991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment.
    Croci DO; Cerliani JP; Pinto NA; Morosi LG; Rabinovich GA
    Glycobiology; 2014 Dec; 24(12):1283-90. PubMed ID: 25117007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways.
    Rabinovich GA; Conejo-García JR
    J Mol Biol; 2016 Aug; 428(16):3266-3281. PubMed ID: 27038510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colonic epithelial cells express specific ligands for mucosal macrophage immunosuppressive receptors siglec-7 and -9.
    Miyazaki K; Sakuma K; Kawamura YI; Izawa M; Ohmori K; Mitsuki M; Yamaji T; Hashimoto Y; Suzuki A; Saito Y; Dohi T; Kannagi R
    J Immunol; 2012 May; 188(9):4690-700. PubMed ID: 22467657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics.
    Taniguchi N; Kizuka Y
    Adv Cancer Res; 2015; 126():11-51. PubMed ID: 25727145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycan-Lectin interactions between platelets and tumor cells drive hematogenous metastasis.
    Shu L; Lin S; Zhou S; Yuan T
    Platelets; 2024 Dec; 35(1):2315037. PubMed ID: 38372252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathobiological implications of mucin glycans in cancer: Sweet poison and novel targets.
    Chugh S; Gnanapragassam VS; Jain M; Rachagani S; Ponnusamy MP; Batra SK
    Biochim Biophys Acta; 2015 Dec; 1856(2):211-25. PubMed ID: 26318196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turning-Off Signaling by Siglecs, Selectins, and Galectins: Chemical Inhibition of Glycan-Dependent Interactions in Cancer.
    Cagnoni AJ; Pérez Sáez JM; Rabinovich GA; Mariño KV
    Front Oncol; 2016; 6():109. PubMed ID: 27242953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased β1,6-N-Glycosylation and Increased Susceptibility to Galectin-3 Binding.
    Priglinger CS; Obermann J; Szober CM; Merl-Pham J; Ohmayer U; Behler J; Gruhn F; Kreutzer TC; Wertheimer C; Geerlof A; Priglinger SG; Hauck SM
    PLoS One; 2016; 11(1):e0146887. PubMed ID: 26760037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered glycosylation in cancer: A promising target for biomarkers and therapeutics.
    Thomas D; Rathinavel AK; Radhakrishnan P
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188464. PubMed ID: 33157161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer.
    Kumar Das A; Ghosh N; Mandal A; Sil PC
    Biochem Pharmacol; 2023 Jan; 207():115367. PubMed ID: 36481348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aberrant glycosylation as biomarker for cancer: focus on CD43.
    Tuccillo FM; de Laurentiis A; Palmieri C; Fiume G; Bonelli P; Borrelli A; Tassone P; Scala I; Buonaguro FM; Quinto I; Scala G
    Biomed Res Int; 2014; 2014():742831. PubMed ID: 24689054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.