BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26855321)

  • 1. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K
    Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal Target of Rapamycin (TOR): A Central Regulatory Hub for Growth, Stress Response and Biomass Production.
    Pancha I; Chokshi K; Tanaka K; Imamura S
    Plant Cell Physiol; 2020 Apr; 61(4):675-684. PubMed ID: 32105317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: from known homologs to new targets.
    Werth EG; McConnell EW; Couso Lianez I; Perrine Z; Crespo JL; Umen JG; Hicks LM
    New Phytol; 2019 Jan; 221(1):247-260. PubMed ID: 30040123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of TOR in
    Ford MM; Smythers AL; McConnell EW; Lowery SC; Kolling DRJ; Hicks LM
    Cells; 2019 Sep; 8(10):. PubMed ID: 31569396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting TOR signaling for enhanced lipid productivity in algae.
    Prioretti L; Carriere F; Field B; Avilan L; Montané MH; Menand B; Gontero B
    Biochimie; 2020 Feb; 169():12-17. PubMed ID: 31265860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.
    Crespo JL; Díaz-Troya S; Florencio FJ
    Plant Physiol; 2005 Dec; 139(4):1736-49. PubMed ID: 16299168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of a
    Zhao J; Ge Y; Liu K; Yamaoka Y; Zhang D; Chi Z; Akkaya M; Kong F
    J Agric Food Chem; 2023 Nov; 71(46):17833-17841. PubMed ID: 37934701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target of Rapamycin Inhibition in
    Mubeen U; Jüppner J; Alpers J; Hincha DK; Giavalisco P
    Plant Cell; 2018 Oct; 30(10):2240-2254. PubMed ID: 30228127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas.
    Díaz-Troya S; Pérez-Pérez ME; Pérez-Martín M; Moes S; Jeno P; Florencio FJ; Crespo JL
    Plant Physiol; 2011 Oct; 157(2):730-41. PubMed ID: 21825107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae.
    Imamura S; Ishiwata A; Watanabe S; Yoshikawa H; Tanaka K
    Biochem Biophys Res Commun; 2013 Sep; 439(2):264-9. PubMed ID: 23973485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.
    Pérez-Pérez ME; Couso I; Crespo JL
    Biomolecules; 2017 Jul; 7(3):. PubMed ID: 28704927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae.
    Du ZY; Benning C
    Subcell Biochem; 2016; 86():179-205. PubMed ID: 27023236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica.
    Liu B; Vieler A; Li C; Daniel Jones A; Benning C
    Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells.
    Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P
    Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii.
    Li X; Jonikas MC
    Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of oil droplets in microalgae.
    Yan C; Fan J; Xu C
    Methods Cell Biol; 2013; 116():71-82. PubMed ID: 24099288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae.
    Pancha I; Shima H; Higashitani N; Igarashi K; Higashitani A; Tanaka K; Imamura S
    Plant J; 2019 Feb; 97(3):485-499. PubMed ID: 30351485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiP links TOR signaling to ER stress in Chlamydomonas.
    Crespo JL
    Plant Signal Behav; 2012 Feb; 7(2):273-5. PubMed ID: 22353876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.