These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26855355)

  • 1. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.
    Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E
    Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring Leaf Penetration and Volatilization of Chlorothalonil and Epoxiconazole Applied on Wheat Leaves in a Laboratory-Scale Experiment.
    Lichiheb N; Bedos C; Personne E; Benoit P; Bergheaud V; Fanucci O; Bouhlel J; Barriuso E
    J Environ Qual; 2015 Nov; 44(6):1782-90. PubMed ID: 26641330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungicide volatilization measurements: inverse modeling, role of vapor pressure, and state of foliar residue.
    Bedos C; Rousseau-Djabri MF; Loubet B; Durand B; Flura D; Briand O; Barriuso E
    Environ Sci Technol; 2010 Apr; 44(7):2522-8. PubMed ID: 20199019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foliar Photodegradation in Pesticide Fate Modeling: Development and Evaluation of the Pesticide Dissipation from Agricultural Land (PeDAL) Model.
    Lyons SM; Hageman KJ
    Environ Sci Technol; 2021 Apr; 55(8):4842-4850. PubMed ID: 33779156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaporation drift of pesticides active ingredients.
    De Schampheleire M; Nuyttens D; De Keyser D; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):739-42. PubMed ID: 19226822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Trends in Pesticide Volatilization from Agricultural Fields Using the Pesticide Loss via Volatilization Model.
    Taylor M; Lyons SM; Davie-Martin CL; Geoghegan TS; Hageman KJ
    Environ Sci Technol; 2020 Feb; 54(4):2202-2209. PubMed ID: 31858785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling pesticide volatilization from turf.
    Haith DA; Lee PC; Clark JM; Roy GR; Imboden MJ; Walden RR
    J Environ Qual; 2002; 31(3):724-9. PubMed ID: 12026074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting and measuring environmental concentration of pesticides in air after soil application.
    Ferrari F; Trevisan M; Capri E
    J Environ Qual; 2003; 32(5):1623-33. PubMed ID: 14535302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping.
    Yang T; Zhao B; Kinchla AJ; Clark JM; He L
    J Agric Food Chem; 2017 May; 65(17):3541-3550. PubMed ID: 28393527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Effects of Temperature, Relative Humidity, Leaf Collection Date, and Foliar Penetration on Leaf-Air Partitioning of Chlorpyrifos.
    Kinross AD; Hageman KJ; Luu C
    Environ Sci Technol; 2022 Sep; 56(18):13058-13065. PubMed ID: 36067451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatilization of parathion and chlorothalonil from a potato crop simulated by the PEARL model.
    Leistra M; van den Berg F
    Environ Sci Technol; 2007 Apr; 41(7):2243-8. PubMed ID: 17438770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.
    Houbraken M; van den Berg F; Butler Ellis CM; Dekeyser D; Nuyttens D; De Schampheleire M; Spanoghe P
    Pest Manag Sci; 2016 Jul; 72(7):1309-21. PubMed ID: 26374459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling volatilization emissions of soil-applied pesticides under agricultural field conditions.
    Ghosh S; Crist K
    Heliyon; 2022 Dec; 8(12):e11810. PubMed ID: 36471845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of pesticide dissipation half-lives in plants.
    Fantke P; Juraske R
    Environ Sci Technol; 2013 Apr; 47(8):3548-62. PubMed ID: 23521068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop.
    Leistra M; Smelt JH; Weststrate JH; van den Berg F; Aalderink R
    Environ Sci Technol; 2006 Jan; 40(1):96-102. PubMed ID: 16433338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaseous deposition contributes to the contamination of surface waters by pesticides close to treated fields. A process-based model study.
    Bedos C; Loubet B; Barriuso E
    Environ Sci Technol; 2013 Dec; 47(24):14250-7. PubMed ID: 24206530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.