These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26855386)

  • 1. In-situ determination of field-scale NAPL mass transfer coefficients: Performance, simulation and analysis.
    Mobile M; Widdowson M; Stewart L; Nyman J; Deeb R; Kavanaugh M; Mercer J; Gallagher D
    J Contam Hydrol; 2016 Apr; 187():31-46. PubMed ID: 26855386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent NAPL source dissolution: evaluation of mass-transfer coefficients.
    Mobile MA; Widdowson MA; Gallagher DL
    Environ Sci Technol; 2012 Sep; 46(18):10047-54. PubMed ID: 22873644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.
    Zhu J; Sun D
    J Contam Hydrol; 2016 Sep; 192():158-164. PubMed ID: 27500747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points.
    Saenton S; Illangasekare TH; Soga K; Saba TA
    J Contam Hydrol; 2002 Nov; 59(1-2):27-44. PubMed ID: 12683638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sherwood correlation for dissolution of pooled NAPL in porous media.
    Aydin Sarikurt D; Gokdemir C; Copty NK
    J Contam Hydrol; 2017 Nov; 206():67-74. PubMed ID: 29033219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of NAPL source zone remediation efficiency and the mass flux approach.
    Soga K; Page JW; Illangasekare TH
    J Hazard Mater; 2004 Jul; 110(1-3):13-27. PubMed ID: 15177723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the impact of a benzene source zone on the transport behavior of PAHs in groundwater.
    Russold S; Schirmer M; Piepenbrink M; Schirmer K
    Environ Sci Technol; 2006 Jun; 40(11):3565-71. PubMed ID: 16786695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments.
    Zhou Y; Cardiff M
    J Contam Hydrol; 2017 May; 200():24-34. PubMed ID: 28366611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.
    Saba T; Illangasekare TH; Ewing J
    J Contam Hydrol; 2001 Sep; 51(1-2):63-82. PubMed ID: 11530927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant flooding makes a comeback: Results of a full-scale, field implementation to recover mobilized NAPL.
    Sharma P; Kostarelos K; Lenschow S; Christensen A; de Blanc PC
    J Contam Hydrol; 2020 Mar; 230():103602. PubMed ID: 32005455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of estimating multicomponent nonaqueous-phase liquid mass in porous media using aqueous concentration ratios.
    Devlint JF; Barbaro JR
    Environ Toxicol Chem; 2001 Nov; 20(11):2443-9. PubMed ID: 11699767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical modelling of the impact of surfactant partitioning on surfactant-enhanced aquifer remediation.
    Babaei M; Copty NK
    J Contam Hydrol; 2019 Feb; 221():69-81. PubMed ID: 30691860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of multicomponent diffusion on NAPL dissolution from spherical ternary mixtures.
    Brahma PP; Harmon TC
    J Contam Hydrol; 2003 Dec; 67(1-4):43-60. PubMed ID: 14607469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of theory and experiment for NAPL dissolution in porous media.
    Bahar T; Golfier F; Oltéan C; Lefevre E; Lorgeoux C
    J Contam Hydrol; 2018 Apr; 211():49-64. PubMed ID: 29573829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scenario-based modelling of mass transfer mechanisms at a petroleum contaminated field site-numerical implications.
    Vasudevan M; Nambi IM; Suresh Kumar G
    J Environ Manage; 2016 Jun; 175():9-19. PubMed ID: 27017268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of NAPL-water interfacial areas and mass transfer rates in two-dimensional flow cell.
    Li M; Zhai Y; Wan L
    Water Sci Technol; 2016 Nov; 74(9):2145-2151. PubMed ID: 27842034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of NAPL Source Morphology on Mass Transfer in the Vadose Zone.
    Petri BG; Fučík R; Illangasekare TH; Smits KM; Christ JA; Sakaki T; Sauck CC
    Ground Water; 2015; 53(5):685-98. PubMed ID: 25535651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced removal of NAPL constituent from aquifer during surfactant flushing with aqueous hydraulic barriers of high viscosity.
    Ahn D; Choi JK; Kim H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jun; 52(7):590-597. PubMed ID: 28281884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.