BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26855455)

  • 1. Chemical and biological mechanisms of phytochemical activation of Nrf2 and importance in disease prevention.
    Eggler AL; Savinov SN
    Recent Adv Phytochem; 2013; 43():121-155. PubMed ID: 26855455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals.
    Surh YJ; Kundu JK; Na HK
    Planta Med; 2008 Oct; 74(13):1526-39. PubMed ID: 18937164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals.
    Chun KS; Kundu J; Kundu JK; Surh YJ
    Toxicol Lett; 2014 Aug; 229(1):73-84. PubMed ID: 24875534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2: friend and foe in preventing cigarette smoking-dependent lung disease.
    Müller T; Hengstermann A
    Chem Res Toxicol; 2012 Sep; 25(9):1805-24. PubMed ID: 22686525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinylation of a KEAP1 sensor lysine promotes NRF2 activation.
    Ibrahim L; Stanton C; Nutsch K; Nguyen T; Li-Ma C; Ko Y; Lander GC; Wiseman RL; Bollong MJ
    bioRxiv; 2023 May; ():. PubMed ID: 37215033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of anti-oxidant Nrf2 signaling by substituted trans stilbenes.
    Deck LM; Whalen LJ; Hunsaker LA; Royer RE; Vander Jagt DL
    Bioorg Med Chem; 2017 Feb; 25(4):1423-1430. PubMed ID: 28126440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers.
    Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Keap1-Nrf2 small-molecule inhibitors from phytochemicals based on molecular docking.
    Li M; Huang W; Jie F; Wang M; Zhong Y; Chen Q; Lu B
    Food Chem Toxicol; 2019 Nov; 133():110758. PubMed ID: 31412289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals.
    Qin S; Hou DX
    Mol Nutr Food Res; 2016 Aug; 60(8):1731-55. PubMed ID: 27523917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles.
    Turpaev KT
    Biochemistry (Mosc); 2013 Feb; 78(2):111-26. PubMed ID: 23581983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles.
    Itoh K; Tong KI; Yamamoto M
    Free Radic Biol Med; 2004 May; 36(10):1208-13. PubMed ID: 15110385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the Nrf2/ARE pathway via S-alkylation of cysteine 151 in the chemopreventive agent-sensor Keap1 protein by falcarindiol, a conjugated diacetylene compound.
    Ohnuma T; Nakayama S; Anan E; Nishiyama T; Ogura K; Hiratsuka A
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):27-36. PubMed ID: 20026152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents.
    Abed DA; Goldstein M; Albanyan H; Jin H; Hu L
    Acta Pharm Sin B; 2015 Jul; 5(4):285-99. PubMed ID: 26579458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochemical Combination PB125 Activates the Nrf2 Pathway and Induces Cellular Protection against Oxidative Injury.
    Hybertson BM; Gao B; Bose S; McCord JM
    Antioxidants (Basel); 2019 May; 8(5):. PubMed ID: 31058853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases.
    Deshmukh P; Unni S; Krishnappa G; Padmanabhan B
    Biophys Rev; 2017 Feb; 9(1):41-56. PubMed ID: 28510041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in understanding NRF2 as a druggable target: development of pro-electrophilic and non-covalent NRF2 activators to overcome systemic side effects of electrophilic drugs like dimethyl fumarate.
    Satoh T; Lipton S
    F1000Res; 2017; 6():2138. PubMed ID: 29263788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway.
    Paunkov A; Chartoumpekis DV; Ziros PG; Chondrogianni N; Kensler TW; Sykiotis GP
    Curr Pharm Des; 2019; 25(16):1828-1846. PubMed ID: 31267862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprint of: Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs.
    Satoh T; McKercher SR; Lipton SA
    Free Radic Biol Med; 2014 Jan; 66():45-57. PubMed ID: 24262357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.