These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26855461)

  • 1. Formant measurement in children's speech based on spectral filtering.
    Story BH; Bunton K
    Speech Commun; 2015; 76():93-111. PubMed ID: 26855461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Frequency Following Responses to Filtered Speech.
    Ananthakrishnan S; Grinstead L; Yurjevich D
    Ear Hear; 2021; 42(1):87-105. PubMed ID: 33369591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrographic and Electroglottographic Findings of Religious Vocal Performers in Düzce Province of Turkey.
    Saruhan S; Guclu E; Ertugrul A
    J Voice; 2018 Jan; 32(1):127.e25-127.e35. PubMed ID: 28502668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cepstral representation of speech motivated by time-frequency masking: an application to speech recognition.
    Aikawa K; Singer H; Kawahara H; Tohkura Y
    J Acoust Soc Am; 1996 Jul; 100(1):603-14. PubMed ID: 8675851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustics of children's speech: developmental changes of temporal and spectral parameters.
    Lee S; Potamianos A; Narayanan S
    J Acoust Soc Am; 1999 Mar; 105(3):1455-68. PubMed ID: 10089598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise estimation in voice signals using short-term cepstral analysis.
    Murphy PJ; Akande OO
    J Acoust Soc Am; 2007 Mar; 121(3):1679-90. PubMed ID: 17407904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formant frequency analysis of children's spoken and sung vowels using sweeping fundamental frequency production.
    White P
    J Voice; 1999 Dec; 13(4):570-82. PubMed ID: 10622522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A statistical, formant-pattern model for segregating vowel type and vocal-tract length in developmental formant data.
    Turner RE; Walters TC; Monaghan JJ; Patterson RD
    J Acoust Soc Am; 2009 Apr; 125(4):2374-86. PubMed ID: 19354411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Audio-vocal responses of vocal fundamental frequency and formant during sustained vowel vocalizations in different noises.
    Lee SH; Hsiao TY; Lee GS
    Hear Res; 2015 Jun; 324():1-6. PubMed ID: 25749240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speech enhancement for listeners with hearing loss based on a model for vowel coding in the auditory midbrain.
    Rao A; Carney LH
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2081-91. PubMed ID: 24686228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Articulatory compensation for low-pass filtered formant-altered auditory feedback.
    Uezu Y; Hiroya S; Mochida T
    J Acoust Soc Am; 2021 Jul; 150(1):64. PubMed ID: 34340472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech production modifications produced in the presence of low-pass and high-pass filtered noise.
    Lu Y; Cooke M
    J Acoust Soc Am; 2009 Sep; 126(3):1495-9. PubMed ID: 19739762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-varying spectral change in the vowels of children and adults.
    Assmann PF; Katz WF
    J Acoust Soc Am; 2000 Oct; 108(4):1856-66. PubMed ID: 11051512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The intelligibility of noise-vocoded speech: spectral information available from across-channel comparison of amplitude envelopes.
    Roberts B; Summers RJ; Bailey PJ
    Proc Biol Sci; 2011 May; 278(1711):1595-600. PubMed ID: 21068039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The accuracy of formant frequency measurements: a comparison of spectrographic analysis and linear prediction.
    Monsen RB; Engebretson AM
    J Speech Hear Res; 1983 Mar; 26(1):89-97. PubMed ID: 6223180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring and modeling vocal source-tract interaction.
    Childers DG; Wong CF
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):663-71. PubMed ID: 7927387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the effects of phonation and articulation: hemispheric asymmetries in the auditory N1m response of the human brain.
    Tiitinen H; Mäkelä AM; Mäkinen V; May PJ; Alku P
    BMC Neurosci; 2005 Oct; 6():62. PubMed ID: 16225699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On Short-Time Estimation of Vocal Tract Length from Formant Frequencies.
    Lammert AC; Narayanan SS
    PLoS One; 2015; 10(7):e0132193. PubMed ID: 26177102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Vocal Tract in Loud Twang-Like Singing While Producing High and Low Pitches.
    Saldías M; Laukkanen AM; Guzmán M; Miranda G; Stoney J; Alku P; Sundberg J
    J Voice; 2021 Sep; 35(5):807.e1-807.e23. PubMed ID: 32305174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.