These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 26855570)
1. Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment. Banasiuk R; Frackowiak JE; Krychowiak M; Matuszewska M; Kawiak A; Ziabka M; Lendzion-Bielun Z; Narajczyk M; Krolicka A Int J Nanomedicine; 2016; 11():315-24. PubMed ID: 26855570 [TBL] [Abstract][Full Text] [Related]
2. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles. Eby DM; Schaeublin NM; Farrington KE; Hussain SM; Johnson GR ACS Nano; 2009 Apr; 3(4):984-94. PubMed ID: 19344124 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity. Haq S; Rehman W; Waseem M; Meynen V; Awan SU; Saeed S; Iqbal N J Photochem Photobiol B; 2018 Sep; 186():116-124. PubMed ID: 30036828 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Moteriya P; Chanda S Artif Cells Nanomed Biotechnol; 2017 Dec; 45(8):1556-1567. PubMed ID: 27900878 [TBL] [Abstract][Full Text] [Related]
5. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Greulich C; Diendorf J; Gessmann J; Simon T; Habijan T; Eggeler G; Schildhauer TA; Epple M; Köller M Acta Biomater; 2011 Sep; 7(9):3505-14. PubMed ID: 21651999 [TBL] [Abstract][Full Text] [Related]
6. Weissella oryzae DC6-facilitated green synthesis of silver nanoparticles and their antimicrobial potential. Singh P; Kim YJ; Wang C; Mathiyalagan R; Yang DC Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1569-75. PubMed ID: 26212222 [TBL] [Abstract][Full Text] [Related]
7. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Wang C; Kim YJ; Singh P; Mathiyalagan R; Jin Y; Yang DC Artif Cells Nanomed Biotechnol; 2016 Jun; 44(4):1127-32. PubMed ID: 25749281 [TBL] [Abstract][Full Text] [Related]
8. Green synthesis of silver nanoparticles combined to calcium glycerophosphate: antimicrobial and antibiofilm activities. Souza JA; Barbosa DB; Berretta AA; do Amaral JG; Gorup LF; de Souza Neto FN; Fernandes RA; Fernandes GL; Camargo ER; Agostinho AM; Delbem AC Future Microbiol; 2018 Mar; 13():345-357. PubMed ID: 29441824 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of Stereospermum suaveolens capped silver and gold nanoparticles and assessment of their innate antioxidant, antimicrobial and antiproliferative activities. Francis S; Koshy EP; Mathew B Bioprocess Biosyst Eng; 2018 Jul; 41(7):939-951. PubMed ID: 29564534 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Swamy MK; Akhtar MS; Mohanty SK; Sinniah UR Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():939-44. PubMed ID: 26186612 [TBL] [Abstract][Full Text] [Related]
11. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Rónavári A; Kovács D; Igaz N; Vágvölgyi C; Boros IM; Kónya Z; Pfeiffer I; Kiricsi M Int J Nanomedicine; 2017; 12():871-883. PubMed ID: 28184158 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi. Rai M; Ingle AP; Gade A; Duran N IET Nanobiotechnol; 2015 Apr; 9(2):71-5. PubMed ID: 25829172 [TBL] [Abstract][Full Text] [Related]
13. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Nayak D; Ashe S; Rauta PR; Kumari M; Nayak B Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():44-52. PubMed ID: 26478285 [TBL] [Abstract][Full Text] [Related]
16. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Mittal AK; Tripathy D; Choudhary A; Aili PK; Chatterjee A; Singh IP; Banerjee UC Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():120-7. PubMed ID: 26042698 [TBL] [Abstract][Full Text] [Related]
17. Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. Zaheer Z J Photochem Photobiol B; 2018 Jan; 178():584-592. PubMed ID: 29272851 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. Zhou Z; Peng S; Sui M; Chen S; Huang L; Xu H; Jiang T Colloids Surf B Biointerfaces; 2018 Jan; 161():394-402. PubMed ID: 29112913 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis of mPEG-luteolin-capped silver nanoparticles with antimicrobial activity and cytotoxicity to neuroblastoma SK-N-SH cells. Qing W; Wang Y; Li X; Lu M; Liu X Colloids Surf B Biointerfaces; 2017 Dec; 160():390-394. PubMed ID: 28965078 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Sadhasivam S; Shanmugam P; Yun K Colloids Surf B Biointerfaces; 2010 Nov; 81(1):358-62. PubMed ID: 20705438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]