BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26855777)

  • 1. N-acetylcysteine in COPD: why, how, and when?
    Sanguinetti CM
    Multidiscip Respir Med; 2015; 11():8. PubMed ID: 26855777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine.
    Santus P; Corsico A; Solidoro P; Braido F; Di Marco F; Scichilone N
    COPD; 2014 Dec; 11(6):705-17. PubMed ID: 24787454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of thiols and implications for the use of inhaled corticosteroids in the presence of oxidative stress in COPD.
    Cazzola M; Page CP; Wedzicha JA; Celli BR; Anzueto A; Matera MG
    Respir Res; 2023 Jul; 24(1):194. PubMed ID: 37517999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation pathway and exacerbations in COPD: the role of NAC.
    Matera MG; Calzetta L; Cazzola M
    Expert Rev Respir Med; 2016; 10(1):89-97. PubMed ID: 26567752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease.
    Tse HN; Tseng CZ
    Int J Chron Obstruct Pulmon Dis; 2014; 9():825-36. PubMed ID: 25125976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological investigation on the anti-oxidant and anti-inflammatory activity of N-acetylcysteine in an ex vivo model of COPD exacerbation.
    Cazzola M; Calzetta L; Facciolo F; Rogliani P; Matera MG
    Respir Res; 2017 Jan; 18(1):26. PubMed ID: 28118826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New developments in the treatment of COPD: comparing the effects of inhaled corticosteroids and N-acetylcysteine.
    van Overveld FJ; Demkow U; Górecka D; de Backer WA; Zielinski J
    J Physiol Pharmacol; 2005 Sep; 56 Suppl 4():135-42. PubMed ID: 16204787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of high-dose N-acetylcysteine on airway geometry, inflammation, and oxidative stress in COPD patients.
    De Backer J; Vos W; Van Holsbeke C; Vinchurkar S; Claes R; Parizel PM; De Backer W
    Int J Chron Obstruct Pulmon Dis; 2013; 8():569-79. PubMed ID: 24293993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant supplementation for lung disease in cystic fibrosis.
    Ciofu O; Smith S; Lykkesfeldt J
    Cochrane Database Syst Rev; 2019 Oct; 10(10):CD007020. PubMed ID: 31580490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-dose N-acetylcysteine for long-term, regular treatment of early-stage chronic obstructive pulmonary disease (GOLD I-II): study protocol for a multicenter, double-blinded, parallel-group, randomized controlled trial in China.
    Tian H; Zhou Y; Tang L; Wu F; Deng Z; Lin B; Huang P; Wei S; Zhao D; Zheng J; Zhong N; Ran P
    Trials; 2020 Sep; 21(1):780. PubMed ID: 32917271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial.
    Zheng JP; Wen FQ; Bai CX; Wan HY; Kang J; Chen P; Yao WZ; Ma LJ; Li X; Raiteri L; Sardina M; Gao Y; Wang BS; Zhong NS;
    Lancet Respir Med; 2014 Mar; 2(3):187-94. PubMed ID: 24621680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review.
    Sadowska AM; Manuel-Y-Keenoy B; De Backer WA
    Pulm Pharmacol Ther; 2007; 20(1):9-22. PubMed ID: 16458553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of oxidative stress in the pathogenesis of COPD.
    Nucera F; Mumby S; Paudel KR; Dharwal V; DI Stefano A; Casolaro V; Hansbro PM; Adcock IM; Caramori G
    Minerva Med; 2022 Jun; 113(3):370-404. PubMed ID: 35142479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Oxidative stress in bronchopulmonary disease: contribution of N-acetylcysteine (NAC)].
    Guerin JC; Leophonte P; Lebas FX; Liard F; Terrioux P; Boulanger P
    Rev Pneumol Clin; 2005 Feb; 61(1 Pt 1):16-21. PubMed ID: 15772575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of high/low dose N-acetylcysteine on chronic obstructive pulmonary disease: a systematic review and meta-analysis.
    Shen Y; Cai W; Lei S; Zhang Z
    COPD; 2014 Jun; 11(3):351-8. PubMed ID: 24378052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of smoking status and concomitant medications on the effect of high-dose N-acetylcysteine on chronic obstructive pulmonary disease exacerbations: A post-hoc analysis of the PANTHEON study.
    Papi A; Zheng J; Criner GJ; Fabbri LM; Calverley PMA
    Respir Med; 2019 Feb; 147():37-43. PubMed ID: 30704697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant therapeutic targets in COPD.
    Rahman I; Kilty I
    Curr Drug Targets; 2006 Jun; 7(6):707-20. PubMed ID: 16787173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-acetylcysteine Attenuates Cigarette Smoke-induced Alveolar Epithelial Cell Apoptosis through Reactive Oxygen Species Depletion and Glutathione Replenish In vivo and In vitro.
    Zhao J; Han M; Tian Y; Zhao P; Liu X; Dong H; Feng S; Li J
    Curr Pharm Biotechnol; 2023 Oct; ():. PubMed ID: 37921125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine.
    Rogliani P; Matera MG; Page C; Puxeddu E; Cazzola M; Calzetta L
    Respir Res; 2019 May; 20(1):104. PubMed ID: 31133026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of N-acetyl cysteine on the concentrations of thiols in plasma, bronchoalveolar lavage fluid, and lung tissue.
    Bridgeman MM; Marsden M; Selby C; Morrison D; MacNee W
    Thorax; 1994 Jul; 49(7):670-5. PubMed ID: 8066561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.