These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26856189)

  • 21. Surgical results and complications of anterior decompression and fusion as a revision surgery after initial posterior surgery for cervical myelopathy due to ossification of the posterior longitudinal ligament.
    Odate S; Shikata J; Soeda T; Yamamura S; Kawaguchi S
    J Neurosurg Spine; 2017 Apr; 26(4):466-473. PubMed ID: 28128699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posterior decompression with kyphosis correction for thoracic myelopathy due to ossification of the ligamentum flavum and ossification of the posterior longitudinal ligament at the same level.
    Zhang HQ; Chen LQ; Liu SH; Zhao D; Guo CF
    J Neurosurg Spine; 2010 Jul; 13(1):116-22. PubMed ID: 20594026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous reduction in ossification of the posterior longitudinal ligament of the thoracic spine after posterior spinal fusion without decompression: a case report.
    Kimura H; Fujibayashi S; Takemoto M; Otsuki B; Matsuda S
    Spine (Phila Pa 1976); 2014 Mar; 39(6):E417-9. PubMed ID: 24384668
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Hybrid Assistive Limb® intervention for a postoperative patient with spinal dural arteriovenous fistula and chronic spinal cord injury: A case study.
    Shimizu Y; Nakai K; Kadone H; Yamauchi S; Kubota S; Ueno T; Marushima A; Hiruta K; Endo A; Kawamoto H; Matsumura A; Sankai Y; Hada Y; Yamazaki M
    J Spinal Cord Med; 2018 Nov; 41(6):710-717. PubMed ID: 28552031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intraoperative 3-dimensional navigation and ultrasonography during posterior decompression with instrumented fusion for ossification of the posterior longitudinal ligament in the thoracic spine.
    Tian W; Weng C; Liu B; Li Q; Sun YQ; Yuan Q; Zhang B; Wang YQ; He D
    J Spinal Disord Tech; 2013 Aug; 26(6):E227-34. PubMed ID: 23381184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Results of surgical treatment for ossification of the posterior longitudinal ligament of the thoracic spine.
    Senda M; Harada Y; Takeuchi K; Nakahara S; Inoue H
    Acta Med Okayama; 1998 Dec; 52(6):319-23. PubMed ID: 9876769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circumspinal decompression with dekyphosis stabilization for thoracic myelopathy due to ossification of the posterior longitudinal ligament.
    Kawahara N; Tomita K; Murakami H; Hato T; Demura S; Sekino Y; Nasu W; Fujimaki Y
    Spine (Phila Pa 1976); 2008 Jan; 33(1):39-46. PubMed ID: 18165747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of 360 degree circular decompression and transpedicle screw fixation in the treatment of ossification of thoracic posterior longitudinal ligament by posterior approach].
    Yang BH; Qin J; Li HP; He XJ; Chun Z
    Zhongguo Gu Shang; 2016 Feb; 29(2):167-71. PubMed ID: 27141789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thoracic ligament ossification in patients with cervical ossification of the posterior longitudinal ligaments: tandem ossification in the cervical and thoracic spine.
    Park JY; Chin DK; Kim KS; Cho YE
    Spine (Phila Pa 1976); 2008 Jun; 33(13):E407-10. PubMed ID: 18520926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-assisted training using Hybrid Assistive Limb® for cerebral palsy.
    Matsuda M; Iwasaki N; Mataki Y; Mutsuzaki H; Yoshikawa K; Takahashi K; Enomoto K; Sano K; Kubota A; Nakayama T; Nakayama J; Ohguro H; Mizukami M; Tomita K
    Brain Dev; 2018 Sep; 40(8):642-648. PubMed ID: 29773349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robot-assisted training using hybrid assistive limb ameliorates gait ability in patients with amyotrophic lateral sclerosis.
    Morioka H; Hirayama T; Sugisawa T; Murata K; Shibukawa M; Ebina J; Sawada M; Hanashiro S; Nagasawa J; Yanagihashi M; Uchi M; Kawabe K; Washizawa N; Ebihara S; Nakajima T; Kano O
    J Clin Neurosci; 2022 May; 99():158-163. PubMed ID: 35279589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of myelopathy due to cervicothoracic OPLL via open door laminoplasty.
    Komagata M; Inahata Y; Nishiyama M; Endo K; Tanaka H; Kobayashi H
    J Spinal Disord Tech; 2007 Jul; 20(5):342-6. PubMed ID: 17607097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postoperative paralysis following posterior decompression with instrumented fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament.
    Yamazaki M; Okawa A; Mannoji C; Fujiyoshi T; Furuya T; Koda M
    J Clin Neurosci; 2011 Feb; 18(2):294-6. PubMed ID: 21030260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Updates of ossification of posterior longitudinal ligament. Clinical results and complication of surgery for thoracic myelopathy due to ossification of posterior longitudinal ligament].
    Yamazaki M
    Clin Calcium; 2009 Oct; 19(10):1499-504. PubMed ID: 19794260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical results of ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine treated by anterior decompression.
    Min JH; Jang JS; Lee SH
    J Spinal Disord Tech; 2008 Apr; 21(2):116-9. PubMed ID: 18391716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical results and complications of circumferential spinal cord decompression through a single posterior approach for thoracic myelopathy caused by ossification of posterior longitudinal ligament.
    Takahata M; Ito M; Abumi K; Kotani Y; Sudo H; Minami A
    Spine (Phila Pa 1976); 2008 May; 33(11):1199-208. PubMed ID: 18469693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study.
    Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H
    Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robot-assisted gait training using a very small-sized Hybrid Assistive Limb® for pediatric cerebral palsy: A case report.
    Kuroda M; Nakagawa S; Mutsuzaki H; Mataki Y; Yoshikawa K; Takahashi K; Nakayama T; Iwasaki N
    Brain Dev; 2020 Jun; 42(6):468-472. PubMed ID: 32249081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Factors Leading to Improved Gait Function in Patients with Subacute or Chronic Central Nervous System Impairments Who Receive Functional Training with the Robot Suit Hybrid Assistive Limb.
    Nishimura M; Kobayashi S; Kinjo Y; Hokama Y; Sugawara K; Tsuchida Y; Tominaga D; Ishiuchi S
    Neurol Med Chir (Tokyo); 2018 Jan; 58(1):39-48. PubMed ID: 29199246
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid Assistive Limb® for sporadic inclusion body myositis: A case series.
    Suzuki N; Soga T; Izumi R; Toyoshima M; Shibasaki M; Sato I; Kudo Y; Aoki M; Kato M
    J Clin Neurosci; 2020 Nov; 81():92-94. PubMed ID: 33222978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.