BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 26856628)

  • 1. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region.
    Faraj SE; González-Lebrero RM; Roman EA; Santos J
    Sci Rep; 2016 Feb; 6():20782. PubMed ID: 26856628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alteration of the C-terminal region of human frataxin distorts its structural dynamics and function.
    Faraj SE; Roman EA; Aran M; Gallo M; Santos J
    FEBS J; 2014 Aug; 281(15):3397-419. PubMed ID: 24920569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational stability of human frataxin and effect of Friedreich's ataxia-related mutations on protein folding.
    Correia AR; Adinolfi S; Pastore A; Gomes CM
    Biochem J; 2006 Sep; 398(3):605-11. PubMed ID: 16787388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The kinetics of folding of frataxin.
    Bonetti D; Toto A; Giri R; Morrone A; Sanfelice D; Pastore A; Temussi P; Gianni S; Brunori M
    Phys Chem Chem Phys; 2014 Apr; 16(14):6391-7. PubMed ID: 24429875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics, stability and iron-binding activity of frataxin clinical mutants.
    Correia AR; Pastore C; Adinolfi S; Pastore A; Gomes CM
    FEBS J; 2008 Jul; 275(14):3680-90. PubMed ID: 18537827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-binding activity in yeast frataxin entails a trade off with stability in the alpha1/beta1 acidic ridge region.
    Correia AR; Wang T; Craig EA; Gomes CM
    Biochem J; 2010 Feb; 426(2):197-203. PubMed ID: 20001966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein stability and dynamics modulation: the case of human frataxin.
    Roman EA; Faraj SE; Gallo M; Salvay AG; Ferreiro DU; Santos J
    PLoS One; 2012; 7(9):e45743. PubMed ID: 23049850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling Protein Plasticity: The Example of Frataxin and Its Variants.
    Botticelli S; La Penna G; Nobili G; Rossi G; Stellato F; Morante S
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights on the conformational dynamics of human frataxin through modifications of loop-1.
    Noguera ME; Aran M; Smal C; Vazquez DS; Herrera MG; Roman EA; Alaimo N; Gallo M; Santos J
    Arch Biochem Biophys; 2017 Dec; 636():123-137. PubMed ID: 29097312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frataxin interacts with Isu1 through a conserved tryptophan in its beta-sheet.
    Leidgens S; De Smet S; Foury F
    Hum Mol Genet; 2010 Jan; 19(2):276-86. PubMed ID: 19884169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frataxin, a molecule of mystery: trading stability for function in its iron-binding site.
    Lane DJ; Richardson DR
    Biochem J; 2010 Feb; 426(2):e1-3. PubMed ID: 20141512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in mitochondrial glutathione levels and protein thiol oxidation in ∆yfh1 yeast cells and the lymphoblasts of patients with Friedreich's ataxia.
    Bulteau AL; Planamente S; Jornea L; Dur A; Lesuisse E; Camadro JM; Auchère F
    Biochim Biophys Acta; 2012 Feb; 1822(2):212-25. PubMed ID: 22200491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conserved Trp155 in human frataxin as a hotspot for oxidative stress related chemical modifications.
    Correia AR; Ow SY; Wright PC; Gomes CM
    Biochem Biophys Res Commun; 2009 Dec; 390(3):1007-11. PubMed ID: 19853582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The E. coli thioredoxin folding mechanism: the key role of the C-terminal helix.
    Vazquez DS; Sánchez IE; Garrote A; Sica MP; Santos J
    Biochim Biophys Acta; 2015 Feb; 1854(2):127-37. PubMed ID: 25463044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vivo mitochondrial two-step maturation of human frataxin.
    Schmucker S; Argentini M; Carelle-Calmels N; Martelli A; Puccio H
    Hum Mol Genet; 2008 Nov; 17(22):3521-31. PubMed ID: 18725397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia.
    Lane DJ; Huang ML; Ting S; Sivagurunathan S; Richardson DR
    Biochem J; 2013 Aug; 453(3):321-36. PubMed ID: 23849057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
    Auchère F; Santos R; Planamente S; Lesuisse E; Camadro JM
    Hum Mol Genet; 2008 Sep; 17(18):2790-802. PubMed ID: 18562474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterotrifunctional chemical cross-linking mass spectrometry confirms physical interaction between human frataxin and ISU.
    Watson HM; Gentry LE; Asuru AP; Wang Y; Marcus S; Busenlehner LS
    Biochemistry; 2012 Sep; 51(35):6889-91. PubMed ID: 22897349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of frataxin in fission yeast iron metabolism: implications for Friedreich's ataxia.
    Wang Y; Wang Y; Marcus S; Busenlehner LS
    Biochim Biophys Acta; 2014 Oct; 1840(10):3022-33. PubMed ID: 24997422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones.
    Shan Y; Napoli E; Cortopassi G
    Hum Mol Genet; 2007 Apr; 16(8):929-41. PubMed ID: 17331979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.