These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26856769)

  • 1. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
    Harih G; Tada M; Dolšak B
    Comput Methods Biomech Biomed Engin; 2016 Oct; 19(13):1409-17. PubMed ID: 26856769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D finite element analysis of the frictional behavior of the human fingertip.
    Yoshida H; Tada M; Mochimaru M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():91-4. PubMed ID: 17945571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of mechanical responses of fingertip to dynamic loading.
    Wu JZ; Dong RG; Rakheja S; Schopper AW
    Med Eng Phys; 2002 May; 24(4):253-64. PubMed ID: 11996844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of frictional property of the human fingertip using three-dimensional finite element analysis.
    Yoshida H; Tada M; Mochimaru M
    Mol Cell Biomech; 2011 Mar; 8(1):61-71. PubMed ID: 21391328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the contact interactions between fingertips and objects with different surface curvatures.
    Wu JZ; Dong RG
    Proc Inst Mech Eng H; 2005; 219(2):89-103. PubMed ID: 15819480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the penetrations of shear and normal vibrations into the soft tissues in a fingertip.
    Wu JZ; Welcome DE; Krajnak K; Dong RG
    Med Eng Phys; 2007 Jul; 29(6):718-27. PubMed ID: 16962362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Integrated Approach to Characterize the Behavior of a Human Fingertip in Contact with a Silica Window.
    D'Angelo ML; Cannella F; Bianchi M; D'Imperio M; Battaglia E; Poggiani M; Rossi G; Bicchi A; Caldwell DG
    IEEE Trans Haptics; 2017; 10(1):123-129. PubMed ID: 27705863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of time-dependent force response of fingertip to dynamic loading.
    Wu JZ; Dong RG; Smutz WP; Schopper AW
    J Biomech; 2003 Mar; 36(3):383-92. PubMed ID: 12594986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the biodynamic interaction between the fingertip and probe in the vibrotactile tests: the influences of the probe/fingertip contact orientation and static indentation.
    Wu JZ; Krajnak K; Welcome DE; Dong RG
    J Biomech; 2009 Jan; 42(2):116-24. PubMed ID: 19110251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional finite element simulations of the dynamic response of a fingertip to vibration.
    Wu JZ; Krajnak K; Welcome DE; Dong RG
    J Biomech Eng; 2008 Oct; 130(5):054501. PubMed ID: 19045525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element evaluation of the effect of fingertip geometry on contact pressure during flat contact.
    Harih G; Tada M
    Int J Numer Method Biomed Eng; 2015 Jun; 31(6):. PubMed ID: 25720455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense.
    Dandekar K; Raju BI; Srinivasan MA
    J Biomech Eng; 2003 Oct; 125(5):682-91. PubMed ID: 14618927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fingertip finite element modelling--on choosing the right material property.
    Dallard J; Merlhiot X; Duprey S; Wang X; Micaelli A
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():30-1. PubMed ID: 25074149
    [No Abstract]   [Full Text] [Related]  

  • 16. An analysis of contact stiffness between a finger and an object when wearing an air-cushioned glove: the effects of the air pressure.
    Wu JZ; Wimer BM; Welcome DE; Dong RG
    Med Eng Phys; 2012 Apr; 34(3):386-93. PubMed ID: 21890395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies.
    Kumar S; Liu G; Schloerb DW; Srinivasan MA
    J Biomech Eng; 2015 Jun; 137(6):061002. PubMed ID: 25751365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ergonomic design of beverage can lift tabs based on numerical evaluations of fingertip discomfort.
    Han J; Nishiyama S; Yamazaki K; Itoh R
    Appl Ergon; 2008 Mar; 39(2):150-7. PubMed ID: 17719555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MRI-based experimentations of fingertip flat compression: Geometrical measurements and finite element inverse simulations to investigate material property parameters.
    Dallard J; Merlhiot X; Petitjean N; Duprey S
    J Biomech; 2018 Jan; 67():166-171. PubMed ID: 29217092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping.
    Jindrich DL; Zhou Y; Becker T; Dennerlein JT
    J Biomech; 2003 Apr; 36(4):497-503. PubMed ID: 12600340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.