These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26856834)

  • 61. Excreted Cytoplasmic Proteins Contribute to Pathogenicity in Staphylococcus aureus.
    Ebner P; Rinker J; Nguyen MT; Popella P; Nega M; Luqman A; Schittek B; Di Marco M; Stevanovic S; Götz F
    Infect Immun; 2016 Jun; 84(6):1672-81. PubMed ID: 27001537
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Two-Component Systems of
    Bleul L; Francois P; Wolz C
    Genes (Basel); 2021 Dec; 13(1):. PubMed ID: 35052374
    [No Abstract]   [Full Text] [Related]  

  • 63. Antimicrobial peptide sensing and detoxification modules: unravelling the regulatory circuitry of Staphylococcus aureus.
    Gebhard S; Mascher T
    Mol Microbiol; 2011 Aug; 81(3):581-7. PubMed ID: 21696467
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional linkage between genes that regulate osmotic stress responses and multidrug resistance transporters: challenges and opportunities for antibiotic discovery.
    Cohen BE
    Antimicrob Agents Chemother; 2014; 58(2):640-6. PubMed ID: 24295980
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure and Function of the Transmembrane Domain of NsaS, an Antibiotic Sensing Histidine Kinase in Staphylococcus aureus.
    Bhate MP; Lemmin T; Kuenze G; Mensa B; Ganguly S; Peters JM; Schmidt N; Pelton JG; Gross CA; Meiler J; DeGrado WF
    J Am Chem Soc; 2018 Jun; 140(24):7471-7485. PubMed ID: 29771498
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies.
    Cardona ST; Choy M; Hogan AM
    J Membr Biol; 2018 Feb; 251(1):75-89. PubMed ID: 29098331
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacterial signal transduction networks via connectors and development of the inhibitors as alternative antibiotics.
    Utsumi R
    Biosci Biotechnol Biochem; 2017 Sep; 81(9):1663-1669. PubMed ID: 28743208
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparative Genomics of
    Coates-Brown R; Moran JC; Pongchaikul P; Darby AC; Horsburgh MJ
    Front Microbiol; 2018; 9():2753. PubMed ID: 30510546
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fatal attraction evaded. How pathogenic bacteria resist cationic polypeptides.
    Ganz T
    J Exp Med; 2001 May; 193(9):F31-4. PubMed ID: 11342596
    [No Abstract]   [Full Text] [Related]  

  • 70. Understanding Bacterial Antibiotic Resistance and Pathogenicity Through Investigating Bacterial Membrane Proteins.
    Duan K; Kumar A
    J Membr Biol; 2018 Feb; 251(1):1-3. PubMed ID: 29445824
    [No Abstract]   [Full Text] [Related]  

  • 71. Daptomycin Tolerance in the Staphylococcus aureus pitA6 Mutant Is Due to Upregulation of the dlt Operon.
    Mechler L; Bonetti EJ; Reichert S; Flötenmeyer M; Schrenzel J; Bertram R; François P; Götz F
    Antimicrob Agents Chemother; 2016 May; 60(5):2684-91. PubMed ID: 26883712
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genomic Characterization of Methicillin-Resistant and Methicillin-Susceptible
    Hetsa BA; Asante J; Mbanga J; Ismail A; Abia ALK; Amoako DG; Essack SY
    Antibiotics (Basel); 2024 Aug; 13(9):. PubMed ID: 39334971
    [No Abstract]   [Full Text] [Related]  

  • 73. Antimicrobial Evaluation of Two Polycyclic Polyprenylated Acylphloroglucinol Compounds: PPAP23 and PPAP53.
    Ammanath AV; Matsuo M; Wang H; Kraus F; Bleisch A; Peslalz P; Mohammad M; Deshmukh M; Grießhammer A; Purkayastha M; Vorbach A; Macek B; Brötz-Oesterhelt H; Maier L; Kretschmer D; Peschel A; Jin T; Plietker B; Götz F
    Int J Mol Sci; 2024 Jul; 25(15):. PubMed ID: 39125595
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Guarding the walls: the multifaceted roles of Bce modules in cell envelope stress sensing and antimicrobial resistance.
    George NL; Bennett EC; Orlando BJ
    J Bacteriol; 2024 Jul; 206(7):e0012324. PubMed ID: 38869304
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Daptomycin avoids drug resistance mediated by the BceAB transporter in
    Faure A; Manuse S; Gonin M; Grangeasse C; Jault J-M; Orelle C
    Microbiol Spectr; 2024 Feb; 12(2):e0363823. PubMed ID: 38214521
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Membrane Lipids Augment Cell Envelope Stress Signaling and Resistance to Antibiotics and Antimicrobial Peptides in
    Miller WR; Nguyen A; Singh KV; Rizvi S; Khan A; Erickson SG; Egge SL; Cruz M; Dinh AQ; Diaz L; Zhang R; Xu L; Garsin DA; Shamoo Y; Arias CA
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904970
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against
    Wang J; Sheng Z; Liu Y; Chen X; Wang S; Yang H
    Front Pharmacol; 2023; 14():1178177. PubMed ID: 37654613
    [No Abstract]   [Full Text] [Related]  

  • 78. MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages.
    Nazarov PA
    Antibiotics (Basel); 2022 May; 11(6):. PubMed ID: 35740141
    [TBL] [Abstract][Full Text] [Related]  

  • 79. New insights into the resistance mechanism for the BceAB-type transporter SaNsrFP.
    Gottstein J; Zaschke-Kriesche J; Unsleber S; Voitsekhovskaia I; Kulik A; Behrmann LV; Overbeck N; Stühler K; Stegmann E; Smits SHJ
    Sci Rep; 2022 Mar; 12(1):4232. PubMed ID: 35273305
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Secretion of and Self-Resistance to the Novel Fibupeptide Antimicrobial Lugdunin by Distinct ABC Transporters in Staphylococcus lugdunensis.
    Krauss S; Zipperer A; Wirtz S; Saur J; Konnerth MC; Heilbronner S; Torres Salazar BO; Grond S; Krismer B; Peschel A
    Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33106269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.