These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 26857072)

  • 41. A chemical-inducible CRISPR-Cas9 system for rapid control of genome editing.
    Liu KI; Ramli MN; Woo CW; Wang Y; Zhao T; Zhang X; Yim GR; Chong BY; Gowher A; Chua MZ; Jung J; Lee JH; Tan MH
    Nat Chem Biol; 2016 Nov; 12(11):980-987. PubMed ID: 27618190
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.
    Weninger A; Hatzl AM; Schmid C; Vogl T; Glieder A
    J Biotechnol; 2016 Oct; 235():139-49. PubMed ID: 27015975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges.
    Yi L; Li J
    Biochim Biophys Acta; 2016 Dec; 1866(2):197-207. PubMed ID: 27641687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal and rheostatic control of genome editing with a chemically-inducible Cas9.
    Wei CT; Maly DJ; Fowler DM
    Methods Enzymol; 2020; 633():119-141. PubMed ID: 32046842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.
    Zhou XX; Zou X; Chung HK; Gao Y; Liu Y; Qi LS; Lin MZ
    ACS Chem Biol; 2018 Feb; 13(2):443-448. PubMed ID: 28938067
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9.
    Bubeck F; Hoffmann MD; Harteveld Z; Aschenbrenner S; Bietz A; Waldhauer MC; Börner K; Fakhiri J; Schmelas C; Dietz L; Grimm D; Correia BE; Eils R; Niopek D
    Nat Methods; 2018 Nov; 15(11):924-927. PubMed ID: 30377362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of an intein-mediated split-Cas9 system for gene therapy.
    Truong DJ; Kühner K; Kühn R; Werfel S; Engelhardt S; Wurst W; Ortiz O
    Nucleic Acids Res; 2015 Jul; 43(13):6450-8. PubMed ID: 26082496
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy.
    Shibata M; Nishimasu H; Kodera N; Hirano S; Ando T; Uchihashi T; Nureki O
    Nat Commun; 2017 Nov; 8(1):1430. PubMed ID: 29127285
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction.
    Singh R; Kuscu C; Quinlan A; Qi Y; Adli M
    Nucleic Acids Res; 2015 Oct; 43(18):e118. PubMed ID: 26032770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rheostatic Control of Cas9-Mediated DNA Double Strand Break (DSB) Generation and Genome Editing.
    Rose JC; Stephany JJ; Wei CT; Fowler DM; Maly DJ
    ACS Chem Biol; 2018 Feb; 13(2):438-442. PubMed ID: 28895730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A quick guide to CRISPR sgRNA design tools.
    Brazelton VA; Zarecor S; Wright DA; Wang Y; Liu J; Chen K; Yang B; Lawrence-Dill CJ
    GM Crops Food; 2015; 6(4):266-76. PubMed ID: 26745836
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments.
    Kimberland ML; Hou W; Alfonso-Pecchio A; Wilson S; Rao Y; Zhang S; Lu Q
    J Biotechnol; 2018 Oct; 284():91-101. PubMed ID: 30142414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly multiplexed CRISPR-Cas9-nuclease and Cas9-nickase vectors for inactivation of hepatitis B virus.
    Sakuma T; Masaki K; Abe-Chayama H; Mochida K; Yamamoto T; Chayama K
    Genes Cells; 2016 Nov; 21(11):1253-1262. PubMed ID: 27659023
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system.
    Jang YJ; Seo SO; Kim SA; Li L; Kim TJ; Kim SC; Jin YS; Han NS
    J Biotechnol; 2017 Jun; 251():151-155. PubMed ID: 28433723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-seq.
    Kim D; Kim S; Kim S; Park J; Kim JS
    Genome Res; 2016 Mar; 26(3):406-15. PubMed ID: 26786045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo.
    Cheong TC; Blasco RB; Chiarle R
    Adv Exp Med Biol; 2018; 1044():39-48. PubMed ID: 29956290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR: taking the shortcut to a healthy genome editing enterprise.
    Papadaki M
    Regen Med; 2016 Apr; 11(3):229-34. PubMed ID: 26965833
    [No Abstract]   [Full Text] [Related]  

  • 59. Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9.
    Nihongaki Y; Otabe T; Sato M
    Anal Chem; 2018 Jan; 90(1):429-439. PubMed ID: 29161010
    [No Abstract]   [Full Text] [Related]  

  • 60. New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites.
    Di Cristina M; Carruthers VB
    Parasitology; 2018 Aug; 145(9):1119-1126. PubMed ID: 29463318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.