These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 26857095)

  • 1. Properties of an optogenetic model for olfactory stimulation.
    Genovese F; Thews M; Möhrlen F; Frings S
    J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective viral transduction of adult-born olfactory neurons for chronic in vivo optogenetic stimulation.
    Lepousez G; Alonso M; Wagner S; Gallarda BW; Lledo PM
    J Vis Exp; 2011 Dec; (58):e3380. PubMed ID: 22231709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2.
    Arenkiel BR; Peca J; Davison IG; Feliciano C; Deisseroth K; Augustine GJ; Ehlers MD; Feng G
    Neuron; 2007 Apr; 54(2):205-18. PubMed ID: 17442243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study.
    Jeong YM; Choi TI; Hwang KS; Lee JS; Gerlai R; Kim CH
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bestrophin 2: an anion channel associated with neurogenesis in chemosensory systems.
    Klimmeck D; Daiber PC; Brühl A; Baumann A; Frings S; Möhrlen F
    J Comp Neurol; 2009 Aug; 515(5):585-99. PubMed ID: 19480000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo optogenetic activation of Na
    Uhelski ML; Bruce DJ; Séguéla P; Wilcox GL; Simone DA
    J Neurophysiol; 2017 Jun; 117(6):2218-2223. PubMed ID: 28298301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal Response Properties of Accessory Olfactory Bulb Neurons: Limitations and Opportunities for Decoding.
    Yoles-Frenkel M; Kahan A; Ben-Shaul Y
    J Neurosci; 2018 May; 38(21):4957-4976. PubMed ID: 29712784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-Temporal Characteristics of Inhibition Mapped by Optical Stimulation in Mouse Olfactory Bulb.
    Lehmann A; D'Errico A; Vogel M; Spors H
    Front Neural Circuits; 2016; 10():15. PubMed ID: 27047340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery of continuously-varying stimuli using channelrhodopsin-2.
    Tchumatchenko T; Newman JP; Fong MF; Potter SM
    Front Neural Circuits; 2013; 7():184. PubMed ID: 24367294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robust Optomotor Assay for Assessing the Efficacy of Optogenetic Tools for Vision Restoration.
    Lu Q; Ganjawala TH; Hattar S; Abrams GW; Pan ZH
    Invest Ophthalmol Vis Sci; 2018 Mar; 59(3):1288-1294. PubMed ID: 29625451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-Type-Specific Modulation of Sensory Responses in Olfactory Bulb Circuits by Serotonergic Projections from the Raphe Nuclei.
    Brunert D; Tsuno Y; Rothermel M; Shipley MT; Wachowiak M
    J Neurosci; 2016 Jun; 36(25):6820-35. PubMed ID: 27335411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation.
    Cinelli AR; Hamilton KA; Kauer JS
    J Neurophysiol; 1995 May; 73(5):2053-71. PubMed ID: 7542699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Activation of Colon Epithelium of the Mouse Produces High-Frequency Bursting in Extrinsic Colon Afferents and Engages Visceromotor Responses.
    Makadia PA; Najjar SA; Saloman JL; Adelman P; Feng B; Margiotta JF; Albers KM; Davis BM
    J Neurosci; 2018 Jun; 38(25):5788-5798. PubMed ID: 29789376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations.
    Ji ZG; Wang H
    Life Sci; 2016 Apr; 150():95-102. PubMed ID: 26903290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic recruitment of spinal reflex pathways from large-diameter primary afferents in non-transgenic rats transduced with AAV9/Channelrhodopsin 2.
    Kubota S; Sidikejiang W; Kudo M; Inoue KI; Umeda T; Takada M; Seki K
    J Physiol; 2019 Oct; 597(19):5025-5040. PubMed ID: 31397900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaky expression of channelrhodopsin-2 (ChR2) in Ai32 mouse lines.
    Prabhakar A; Vujovic D; Cui L; Olson W; Luo W
    PLoS One; 2019; 14(3):e0213326. PubMed ID: 30913225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic excitation of neurons with channelrhodopsins: light instrumentation, expression systems, and channelrhodopsin variants.
    Lin JY
    Prog Brain Res; 2012; 196():29-47. PubMed ID: 22341319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 24.