BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 26857245)

  • 1. Cytosolic NADH-NAD(+) Redox Visualized in Brain Slices by Two-Photon Fluorescence Lifetime Biosensor Imaging.
    Mongeon R; Venkatachalam V; Yellen G
    Antioxid Redox Signal; 2016 Oct; 25(10):553-63. PubMed ID: 26857245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Live-cell imaging of cytosolic NADH-NAD+ redox state using a genetically encoded fluorescent biosensor.
    Hung YP; Yellen G
    Methods Mol Biol; 2014; 1071():83-95. PubMed ID: 24052382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging cytosolic NADH-NAD(+) redox state with a genetically encoded fluorescent biosensor.
    Hung YP; Albeck JG; Tantama M; Yellen G
    Cell Metab; 2011 Oct; 14(4):545-54. PubMed ID: 21982714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble adenylyl cyclase regulates the cytosolic NADH/NAD
    Chang JC; Go S; Gilglioni EH; Duijst S; Panneman DM; Rodenburg RJ; Li HL; Huang HL; Levin LR; Buck J; Verhoeven AJ; Oude Elferink RPJ
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148367. PubMed ID: 33412125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo NADH/NAD
    Steinbeck J; Fuchs P; Negroni YL; Elsässer M; Lichtenauer S; Stockdreher Y; Feitosa-Araujo E; Kroll JB; Niemeier JO; Humberg C; Smith EN; Mai M; Nunes-Nesi A; Meyer AJ; Zottini M; Morgan B; Wagner S; Schwarzländer M
    Plant Cell; 2020 Oct; 32(10):3324-3345. PubMed ID: 32796121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the NADH/NAD
    Tejwani V; Schmitt FJ; Wilkening S; Zebger I; Horch M; Lenz O; Friedrich T
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):86-94. PubMed ID: 27816420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically encoded biosensors for evaluating NAD
    Hu Q; Wu D; Walker M; Wang P; Tian R; Wang W
    Cell Rep Methods; 2021 Nov; 1(7):. PubMed ID: 34901920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response properties of the genetically encoded optical H2O2 sensor HyPer.
    Weller J; Kizina KM; Can K; Bao G; Müller M
    Free Radic Biol Med; 2014 Nov; 76():227-41. PubMed ID: 25179473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca²⁺ signals of astrocytes are modulated by the NAD⁺/NADH redox state.
    Requardt RP; Hirrlinger PG; Wilhelm F; Winkler U; Besser S; Hirrlinger J
    J Neurochem; 2012 Mar; 120(6):1014-25. PubMed ID: 22299833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the impact of changes in the extracellular environment on the cytosolic free NAD+/NADH ratio during cell culture.
    Kelly RA; Leedale J; Harrell A; Beard DA; Randle LE; Chadwick AE; Webb SD
    PLoS One; 2018; 13(11):e0207803. PubMed ID: 30496306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.
    Kasischke KA; Vishwasrao HD; Fisher PJ; Zipfel WR; Webb WW
    Science; 2004 Jul; 305(5680):99-103. PubMed ID: 15232110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NADH/NAD redox state of cytoplasmic glycolytic compartments in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2872-8. PubMed ID: 11087243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminating changes in intracellular NADH/NAD
    Wilkening S; Schmitt FJ; Lenz O; Zebger I; Horch M; Friedrich T
    Biochim Biophys Acta Bioenerg; 2019 Oct; 1860(10):148062. PubMed ID: 31419395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.