These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26857420)

  • 1. Proteomic analysis of a compatible interaction between sugarcane and Sporisorium scitamineum.
    Barnabas L; Ashwin NM; Kaverinathan K; Trentin AR; Pivato M; Sundar AR; Malathi P; Viswanathan R; Rosana OB; Neethukrishna K; Carletti P; Arrigoni G; Masi A; Agrawal GK; Rakwal R
    Proteomics; 2016 Apr; 16(7):1111-22. PubMed ID: 26857420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic Analysis of the Resistance Mechanisms in Sugarcane during
    Singh P; Song QQ; Singh RK; Li HB; Solanki MK; Malviya MK; Verma KK; Yang LT; Li YR
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30699953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro secretomic analysis identifies putative pathogenicity-related proteins of Sporisorium scitamineum - The sugarcane smut fungus.
    Barnabas L; Ashwin NMR; Kaverinathan K; Trentin AR; Pivato M; Sundar AR; Malathi P; Viswanathan R; Carletti P; Arrigoni G; Masi A; Agrawal GK; Rakwal R
    Fungal Biol; 2017 Mar; 121(3):199-211. PubMed ID: 28215348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane.
    Su Y; Xu L; Wang Z; Peng Q; Yang Y; Chen Y; Que Y
    BMC Genomics; 2016 Oct; 17(1):800. PubMed ID: 27733120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and evaluation of PCR reference genes for host and pathogen in sugarcane-Sporisorium scitamineum interaction system.
    Huang N; Ling H; Liu F; Su Y; Su W; Mao H; Zhang X; Wang L; Chen R; Que Y
    BMC Genomics; 2018 Jun; 19(1):479. PubMed ID: 29914370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional analysis identifies major pathways as response components to Sporisorium scitamineum stress in sugarcane.
    Huang N; Ling H; Su Y; Liu F; Xu L; Su W; Wu Q; Guo J; Gao S; Que Y
    Gene; 2018 Dec; 678():207-218. PubMed ID: 30099025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic degradome landscape on miRNAs and their predicted targets in sugarcane caused by Sporisorium scitamineum stress.
    Su Y; Xiao X; Ling H; Huang N; Liu F; Su W; Zhang Y; Xu L; Muhammad K; Que Y
    BMC Genomics; 2019 Jan; 20(1):57. PubMed ID: 30658590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy.
    McNeil MD; Bhuiyan SA; Berkman PJ; Croft BJ; Aitken KS
    PLoS One; 2018; 13(5):e0197840. PubMed ID: 29795614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomics of sugarcane smut fungus - Sporisorium scitamineum unravels dynamic proteomic alterations during the dimorphic transition.
    Kumaravel N; Ebinezer LB; Ashwin NMR; Franchin C; Battisti I; Carletti P; Ramesh Sundar A; Masi A; Malathi P; Viswanathan R; Arrigoni G
    J Proteomics; 2024 Jul; 304():105230. PubMed ID: 38901800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of smut-responsive genes in sugarcane using cDNA-SRAP.
    Huang N; Zhang YY; Xiao XH; Huang L; Wu QB; Que YX; Xu LP
    Genet Mol Res; 2015 Jun; 14(2):6808-18. PubMed ID: 26125888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small RNA sequencing reveals a role for sugarcane miRNAs and their targets in response to Sporisorium scitamineum infection.
    Su Y; Zhang Y; Huang N; Liu F; Su W; Xu L; Ahmad W; Wu Q; Guo J; Que Y
    BMC Genomics; 2017 Apr; 18(1):325. PubMed ID: 28438123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity.
    Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH
    Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Potential Surrogate Systems for Studying the Early Steps of the
    Marrafon-Silva M; Maia T; Calderan-Rodrigues MJ; Strabello M; Oliveira L; Creste S; Melotto M; Monteiro-Vitorello CB
    Phytopathology; 2024 Jun; 114(6):1295-1304. PubMed ID: 38148162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminotransferase SsAro8 Regulates Tryptophan Metabolism Essential for Filamentous Growth of Sugarcane Smut Fungus
    Cui G; Huang C; Bi X; Wang Y; Yin K; Zhu L; Jiang Z; Chen B; Deng YZ
    Microbiol Spectr; 2022 Aug; 10(4):e0057022. PubMed ID: 35862944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut.
    Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C
    BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of SofDIR16 and SofCAD genes in smut resistant and susceptible sugarcane cultivars in response to Sporisorium scitamineum.
    Sánchez-Elordi E; Contreras R; de Armas R; Benito MC; Alarcón B; de Oliveira E; Del Mazo C; Díaz-Peña EM; Santiago R; Vicente C; Legaz ME
    J Plant Physiol; 2018 Jul; 226():103-113. PubMed ID: 29753910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane.
    Taniguti LM; Schaker PD; Benevenuto J; Peters LP; Carvalho G; Palhares A; Quecine MC; Nunes FR; Kmit MC; Wai A; Hausner G; Aitken KS; Berkman PJ; Fraser JA; Moolhuijzen PM; Coutinho LL; Creste S; Vieira ML; Kitajima JP; Monteiro-Vitorello CB
    PLoS One; 2015; 10(6):e0129318. PubMed ID: 26065709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and characterization of two pathogenesis-related β-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum.
    Su YC; Xu LP; Xue BT; Wu QB; Guo JL; Wu LG; Que YX
    Plant Cell Rep; 2013 Oct; 32(10):1503-19. PubMed ID: 23842883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotrophic interaction of Sporisorium scitamineum on a new host--Saccharum spontaneum.
    Jose RC; Louis B; Goyari S; Waikhom SD; Handique PJ; Talukdar NC
    Micron; 2016 Feb; 81():8-15. PubMed ID: 26642345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq.
    Que Y; Su Y; Guo J; Wu Q; Xu L
    PLoS One; 2014; 9(8):e106476. PubMed ID: 25171065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.