These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An integrated machine-learning model to predict prokaryotic essential genes. Deng J Methods Mol Biol; 2015; 1279():137-51. PubMed ID: 25636617 [TBL] [Abstract][Full Text] [Related]
5. OGEE v3: Online GEne Essentiality database with increased coverage of organisms and human cell lines. Gurumayum S; Jiang P; Hao X; Campos TL; Young ND; Korhonen PK; Gasser RB; Bork P; Zhao XM; He LJ; Chen WH Nucleic Acids Res; 2021 Jan; 49(D1):D998-D1003. PubMed ID: 33084874 [TBL] [Abstract][Full Text] [Related]
6. Essentiality, conservation, evolutionary pressure and codon bias in bacterial genomes. Dilucca M; Cimini G; Giansanti A Gene; 2018 Jul; 663():178-188. PubMed ID: 29678658 [TBL] [Abstract][Full Text] [Related]
7. Predicting essential genes in fungal genomes. Seringhaus M; Paccanaro A; Borneman A; Snyder M; Gerstein M Genome Res; 2006 Sep; 16(9):1126-35. PubMed ID: 16899653 [TBL] [Abstract][Full Text] [Related]
8. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. Acencio ML; Lemke N BMC Bioinformatics; 2009 Sep; 10():290. PubMed ID: 19758426 [TBL] [Abstract][Full Text] [Related]
9. Computational prediction of essential metabolic genes using constraint-based approaches. Basler G Methods Mol Biol; 2015; 1279():183-204. PubMed ID: 25636620 [TBL] [Abstract][Full Text] [Related]
10. Prediction of essential genes in prokaryote based on artificial neural network. Xu L; Guo Z; Liu X Genes Genomics; 2020 Jan; 42(1):97-106. PubMed ID: 31736009 [TBL] [Abstract][Full Text] [Related]
11. Gene essentiality prediction based on fractal features and machine learning. Yu Y; Yang L; Liu Z; Zhu C Mol Biosyst; 2017 Feb; 13(3):577-584. PubMed ID: 28145541 [TBL] [Abstract][Full Text] [Related]
12. Computational prediction of genomic functional cores specific to different microbes. Carbone A J Mol Evol; 2006 Dec; 63(6):733-46. PubMed ID: 17103060 [TBL] [Abstract][Full Text] [Related]
13. DELEAT: gene essentiality prediction and deletion design for bacterial genome reduction. Solana J; Garrote-Sánchez E; Gil R BMC Bioinformatics; 2021 Sep; 22(1):444. PubMed ID: 34537011 [TBL] [Abstract][Full Text] [Related]
14. A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. Zalacain M; Biswas S; Ingraham KA; Ambrad J; Bryant A; Chalker AF; Iordanescu S; Fan J; Fan F; Lunsford RD; O'Dwyer K; Palmer LM; So C; Sylvester D; Volker C; Warren P; McDevitt D; Brown JR; Holmes DJ; Burnham MK J Mol Microbiol Biotechnol; 2003; 6(2):109-26. PubMed ID: 15044829 [TBL] [Abstract][Full Text] [Related]
15. Transposon-based strategies for the identification of essential bacterial genes. Reznikoff WS; Winterberg KM Methods Mol Biol; 2008; 416():13-26. PubMed ID: 18392958 [TBL] [Abstract][Full Text] [Related]
16. Analysis and identification of essential genes in humans using topological properties and biological information. Yang L; Wang J; Wang H; Lv Y; Zuo Y; Li X; Jiang W Gene; 2014 Nov; 551(2):138-51. PubMed ID: 25168893 [TBL] [Abstract][Full Text] [Related]
17. Identifying essential genes in bacterial metabolic networks with machine learning methods. Plaimas K; Eils R; König R BMC Syst Biol; 2010 May; 4():56. PubMed ID: 20438628 [TBL] [Abstract][Full Text] [Related]
18. Predicting essential genes based on network and sequence analysis. Hwang YC; Lin CC; Chang JY; Mori H; Juan HF; Huang HC Mol Biosyst; 2009 Dec; 5(12):1672-8. PubMed ID: 19452048 [TBL] [Abstract][Full Text] [Related]