These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 26858115)
1. Separation of small organic molecules using covalent organic frameworks-LZU1 as stationary phase by open-tubular capillary electrochromatography. Niu X; Ding S; Wang W; Xu Y; Xu Y; Chen H; Chen X J Chromatogr A; 2016 Mar; 1436():109-17. PubMed ID: 26858115 [TBL] [Abstract][Full Text] [Related]
2. [Preparation of a two-dimensional azine-linked covalent organic framework-coated capillary and its application to the separation of nitrophenol environmental endocrine disruptors by open-tubular capillary electrochromatography]. Zhao L; Lü W; Niu X; Pan C; Chen H; Chen X Se Pu; 2020 Sep; 38(9):1095-1101. PubMed ID: 34213276 [TBL] [Abstract][Full Text] [Related]
3. In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Niu X; Lv W; Sun Y; Dai H; Chen H; Chen X Mikrochim Acta; 2020 Mar; 187(4):233. PubMed ID: 32180017 [TBL] [Abstract][Full Text] [Related]
4. Covalent organic framework TpPa-1 as stationary phase for capillary electrochromatographic separation of drugs and food additives. Kong D; Chen Z Electrophoresis; 2018 Nov; 39(22):2912-2918. PubMed ID: 30194854 [TBL] [Abstract][Full Text] [Related]
5. β-Cyclodextrin-modified covalent organic framework as chiral stationary phase for the separation of amino acids and β-blockers by capillary electrochromatography. Li Y; Lin X; Qin S; Gao L; Tang Y; Liu S; Wang Y Chirality; 2020 Jul; 32(7):1008-1019. PubMed ID: 32329149 [TBL] [Abstract][Full Text] [Related]
6. [Recent developments in the application of covalent organic frameworks in capillary electrochromatography]. Wang GX; Chen YL; Lü WJ; Chen HL; Chen XG Se Pu; 2023 Oct; 41(10):835-842. PubMed ID: 37875406 [TBL] [Abstract][Full Text] [Related]
7. Polydopamine-supported immobilization of covalent-organic framework-5 in capillary as stationary phase for electrochromatographic separation. Bao T; Tang P; Kong D; Mao Z; Chen Z J Chromatogr A; 2016 May; 1445():140-8. PubMed ID: 27062718 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of crystalline covalent organic framework as stationary phase for capillary electrochromatography. Li Q; Li Z; Fu Y; Hu C; Chen Z J Chromatogr A; 2022 Jun; 1673():463070. PubMed ID: 35526299 [TBL] [Abstract][Full Text] [Related]
9. In situ room-temperature preparation of a covalent organic framework as stationary phase for high-efficiency capillary electrochromatographic separation. Fu Y; Li Z; Li Q; Hu C; Liu Y; Sun W; Chen Z J Chromatogr A; 2021 Jul; 1649():462239. PubMed ID: 34034110 [TBL] [Abstract][Full Text] [Related]
10. An azine-linked covalent organic framework as stationary phase for separation of environmental endocrine disruptors by open-tubular capillary electrochromatography. Zhao L; Lv W; Niu X; Pan C; Chen H; Chen X J Chromatogr A; 2020 Mar; 1615():460722. PubMed ID: 31780079 [TBL] [Abstract][Full Text] [Related]
11. In-situ immobilization of covalent organic frameworks as stationary phase for capillary electrochromatography. Fu Y; Li Z; Hu C; Li Q; Chen Z J Chromatogr A; 2023 Aug; 1705():464205. PubMed ID: 37442070 [TBL] [Abstract][Full Text] [Related]
12. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography. Xu YY; Lv WJ; Ren CL; Niu XY; Chen HL; Chen XG J Chromatogr A; 2018 Jan; 1532():223-231. PubMed ID: 29203115 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of a covalent organic framework with hydrazine linkages and its application in open-tubular capillary electrochromatography. Wang F; Zhang Y; Wang G; Qi S; Lv W; Liu J; Chen H; Chen X J Chromatogr A; 2022 Jan; 1661():462681. PubMed ID: 34856505 [TBL] [Abstract][Full Text] [Related]
14. A covalent organic framework for chiral capillary electrochromatography using a cyclodextrin mobile phase additive. Gao L; Zhao X; Qin S; Dong Q; Hu X; Chu H Chirality; 2022 Mar; 34(3):537-549. PubMed ID: 34997664 [TBL] [Abstract][Full Text] [Related]
15. Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. Zong R; Wang X; Yin H; Li Z; Huang C; Xiang Y; Ye N J Chromatogr A; 2021 Oct; 1656():462549. PubMed ID: 34543884 [TBL] [Abstract][Full Text] [Related]
16. In situ growth of imine-based covalent organic framework as stationary phase for high-efficiency electrochromatographic separation. Li Z; Liao Z; Hu J; Chen Z J Chromatogr A; 2023 Apr; 1694():463905. PubMed ID: 36881971 [TBL] [Abstract][Full Text] [Related]
17. Room-temperature growth of covalent organic frameworks as the stationary phase for open-tubular capillary electrochromatography. Li Q; Li Z; Fu Y; Clarot I; Boudier A; Chen Z Analyst; 2021 Oct; 146(21):6643-6649. PubMed ID: 34591047 [TBL] [Abstract][Full Text] [Related]
18. Fluorinated covalent organic frameworks as a stationary phase for separation of fluoroquinolones by capillary electrochromatography. Zong R; Yin H; Xiang Y; Zhang L; Ye N Mikrochim Acta; 2022 May; 189(6):237. PubMed ID: 35643990 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis and immobilization of functionalized covalent organic framework-1 for electrochromatographic separation. Bao T; Wang S; Zhang N; Zhang J J Chromatogr A; 2021 May; 1645():462130. PubMed ID: 33848663 [TBL] [Abstract][Full Text] [Related]
20. Study of the separation ability differences of three covalent organic frameworks as coated materials in capillary electrochromatography. Lv W; Zhang Y; Wang G; Zhao L; Wang F; Chen Y; Chen H; Zhang X; Chen X J Chromatogr A; 2022 Aug; 1677():463289. PubMed ID: 35820229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]