BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 26858118)

  • 1. A versatile ultra-high performance LC-MS method for lipid profiling.
    Knittelfelder OL; Weberhofer BP; Eichmann TO; Kohlwein SD; Rechberger GN
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Mar; 951-952():119-28. PubMed ID: 24548922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-Based Nanotechnology: Liposome.
    Jiang Y; Li W; Wang Z; Lu J
    Pharmaceutics; 2023 Dec; 16(1):. PubMed ID: 38258045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials.
    Hachem M; Ahmmed MK; Nacir-Delord H
    Mol Neurobiol; 2024 Jun; 61(6):3272-3295. PubMed ID: 37981628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lipidomics platform to analyze the fatty acid compositions of non-polar and polar lipid molecular species from plant tissues: Examples from developing seeds and seedlings of pennycress (
    Romsdahl TB; Cocuron JC; Pearson MJ; Alonso AP; Chapman KD
    Front Plant Sci; 2022; 13():1038161. PubMed ID: 36438089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in mass spectrometry-based metabolomics for investigation of metabolites.
    Ren JL; Zhang AH; Kong L; Wang XJ
    RSC Adv; 2018 Jun; 8(40):22335-22350. PubMed ID: 35539746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica Hydride: A Separation Material Every Analyst Should Know About.
    Pesek JJ; Matyska MT
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-targeted Lipidomics Using a Robust and Reproducible Lipid Separation Using UPLC with Charged Surface Hybrid Technology and High-Resolution Mass Spectrometry.
    Isaac G; Shulaev V; Plumb RS
    Methods Mol Biol; 2022; 2396():175-186. PubMed ID: 34786683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in levels of phosphatidylinositols in healthy and stable Coronary Artery Disease subjects revealed by HILIC-MRM method with SERRF normalization.
    Huang Y; Mu R; Wen D; Grimsby JS; Liang M; Rosenbaum AI
    PLoS One; 2021; 16(6):e0252426. PubMed ID: 34086718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural-based connectivity and omic phenotype evaluations (SCOPE): a cheminformatics toolbox for investigating lipidomic changes in complex systems.
    Odenkirk MT; Zin PPK; Ash JR; Reif DM; Fourches D; Baker ES
    Analyst; 2020 Nov; 145(22):7197-7209. PubMed ID: 33094747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA-dependent sterol aspartylation in fungi.
    Yakobov N; Fischer F; Mahmoudi N; Saga Y; Grube CD; Roy H; Senger B; Grob G; Tatematsu S; Yokokawa D; Mouyna I; Latgé JP; Nakajima H; Kushiro T; Becker HD
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14948-14957. PubMed ID: 32541034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of LC-MS and LC×LC-MS in analysis of zebrafish embryo samples for comprehensive lipid profiling.
    Xu M; Legradi J; Leonards P
    Anal Bioanal Chem; 2020 Jul; 412(18):4313-4325. PubMed ID: 32347362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of lipid quantification accuracy using HILIC and RPLC MS on the example of NIST® SRM® 1950 metabolites in human plasma.
    Lange M; Fedorova M
    Anal Bioanal Chem; 2020 Jun; 412(15):3573-3584. PubMed ID: 32240327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted lipidomics and transcriptomics profiling reveal the heterogeneity of visceral and subcutaneous white adipose tissue.
    Hou B; Zhao Y; He P; Xu C; Ma P; Lam SM; Li B; Gil V; Shui G; Qiang G; Liew CW; Du G
    Life Sci; 2020 Mar; 245():117352. PubMed ID: 32006527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-Performance capillary liquid chromatography-mass spectrometry at 35 kpsi for separation of lipids.
    Sorensen MJ; Miller KE; Jorgenson JW; Kennedy RT
    J Chromatogr A; 2020 Jan; 1611():460575. PubMed ID: 31607445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Modified Lipids during Routine Lipidomics Analysis using HILIC and C30 Reverse Phase Liquid Chromatography coupled to Mass Spectrometry.
    Pham TH; Zaeem M; Fillier TA; Nadeem M; Vidal NP; Manful C; Cheema S; Cheema M; Thomas RH
    Sci Rep; 2019 Mar; 9(1):5048. PubMed ID: 30911033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics.
    Li K; Naviaux JC; Bright AT; Wang L; Naviaux RK
    Metabolomics; 2017; 13(10):122. PubMed ID: 28943831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipidomics by ultrahigh performance liquid chromatography-high resolution mass spectrometry and its application to complex biological samples.
    Triebl A; Trötzmüller M; Hartler J; Stojakovic T; Köfeler HC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 May; 1053():72-80. PubMed ID: 28415015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipidomics: Prospects from a technological perspective.
    Triebl A; Hartler J; Trötzmüller M; C Köfeler H
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Aug; 1862(8):740-746. PubMed ID: 28341148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.
    Cífková E; Hájek R; Lísa M; HolĿapek M
    J Chromatogr A; 2016 Mar; 1439():65-73. PubMed ID: 26858118
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.