BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26858404)

  • 1. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP.
    Herring BE; Nicoll RA
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2264-9. PubMed ID: 26858404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP.
    Araki Y; Zeng M; Zhang M; Huganir RL
    Neuron; 2015 Jan; 85(1):173-189. PubMed ID: 25569349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The muscarinic long-term enhancement of NMDA and AMPA receptor-mediated transmission at Schaffer collateral synapses develop through different intracellular mechanisms.
    Fernández de Sevilla D; Buño W
    J Neurosci; 2010 Aug; 30(33):11032-42. PubMed ID: 20720110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation.
    Schmitt JM; Guire ES; Saneyoshi T; Soderling TR
    J Neurosci; 2005 Feb; 25(5):1281-90. PubMed ID: 15689566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation in cultured hippocampal neurons.
    Molnár E
    Semin Cell Dev Biol; 2011 Jul; 22(5):506-13. PubMed ID: 21807105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of CaMKII action in long-term potentiation.
    Lisman J; Yasuda R; Raghavachari S
    Nat Rev Neurosci; 2012 Feb; 13(3):169-82. PubMed ID: 22334212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of
    Bhouri M; Morishita W; Temkin P; Goswami D; Kawabe H; Brose N; Südhof TC; Craig AM; Siddiqui TJ; Malenka R
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5382-E5389. PubMed ID: 29784826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines.
    Xie Z; Srivastava DP; Photowala H; Kai L; Cahill ME; Woolfrey KM; Shum CY; Surmeier DJ; Penzes P
    Neuron; 2007 Nov; 56(4):640-56. PubMed ID: 18031682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The CaMKII/NMDAR complex as a molecular memory.
    Sanhueza M; Lisman J
    Mol Brain; 2013 Feb; 6():10. PubMed ID: 23410178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ras inhibitor S-trans, trans-farnesylthiosalicylic acid enhances spatial memory and hippocampal long-term potentiation via up-regulation of NMDA receptor.
    Wang Y; Chen T; Yuan Z; Zhang Y; Zhang B; Zhao L; Chen L
    Neuropharmacology; 2018 Sep; 139():257-267. PubMed ID: 29578035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.
    Herring BE; Nicoll RA
    Annu Rev Physiol; 2016; 78():351-65. PubMed ID: 26863325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galantamine enhancement of long-term potentiation is mediated by calcium/calmodulin-dependent protein kinase II and protein kinase C activation.
    Moriguchi S; Shioda N; Han F; Yeh JZ; Narahashi T; Fukunaga K
    Hippocampus; 2009 Sep; 19(9):844-54. PubMed ID: 19253410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus.
    Park P; Georgiou J; Sanderson TM; Ko KH; Kang H; Kim JI; Bradley CA; Bortolotto ZA; Zhuo M; Kaang BK; Collingridge GL
    Nat Commun; 2021 Jan; 12(1):413. PubMed ID: 33462202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the CaMKII/NMDA receptor complex in the maintenance of synaptic strength.
    Sanhueza M; Fernandez-Villalobos G; Stein IS; Kasumova G; Zhang P; Bayer KU; Otmakhov N; Hell JW; Lisman J
    J Neurosci; 2011 Jun; 31(25):9170-8. PubMed ID: 21697368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity.
    Zeng Y; Zhao D; Xie CW
    J Alzheimers Dis; 2010; 21(3):823-31. PubMed ID: 20634586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.