These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26858446)

  • 1. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule.
    Aitken ZH; Luo S; Reynolds SN; Thaulow C; Greer JR
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2017-22. PubMed ID: 26858446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelength and orientation dependent capture of light by diatom frustule nanostructures.
    Romann J; Valmalette JC; Chauton MS; Tranell G; Einarsrud MA; Vadstein O
    Sci Rep; 2015 Dec; 5():17403. PubMed ID: 26627680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFM nanoindentations of diatom biosilica surfaces.
    Losic D; Short K; Mitchell JG; Lal R; Voelcker NH
    Langmuir; 2007 Apr; 23(9):5014-21. PubMed ID: 17397194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can diatom girdle band pores act as a hydrodynamic viral defense mechanism?
    Herringer JW; Lester D; Dorrington GE; Rosengarten G
    J Biol Phys; 2019 Jun; 45(2):213-234. PubMed ID: 31140117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al
    Soleimani M; Rutten L; Maddala SP; Wu H; Eren ED; Mezari B; Schreur-Piet I; Friedrich H; van Benthem RATM
    Sci Rep; 2020 Nov; 10(1):19498. PubMed ID: 33177559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.
    Hamm CE
    J Nanosci Nanotechnol; 2005 Jan; 5(1):108-19. PubMed ID: 15762169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology.
    Pan Z; Lerch SJ; Xu L; Li X; Chuang YJ; Howe JY; Mahurin SM; Dai S; Hildebrand M
    Sci Rep; 2014 Aug; 4():6117. PubMed ID: 25135739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on tribological mechanism for multi-layer porous structure of diatom frustule.
    Meng F; Gao G; Jia Z
    Microb Ecol; 2015 Jan; 69(1):45-58. PubMed ID: 25204749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aberration of morphogenesis of siliceous frustule elements of the diatom Synedra acus in the presence of germanic acid.
    Safonova TA; Annenkov VV; Chebykin EP; Danilovtseva EN; Likhoshway YV; Grachev MA
    Biochemistry (Mosc); 2007 Nov; 72(11):1261-9. PubMed ID: 18205610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing the static and dynamic nanomechanical properties of diatom frustules-Nature's glass lace.
    Cvjetinovic J; Luchkin SY; Statnik ES; Davidovich NA; Somov PA; Salimon AI; Korsunsky AM; Gorin DA
    Sci Rep; 2023 Apr; 13(1):5518. PubMed ID: 37015973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based optical filtering by the silica microshell of the centric marine diatom Coscinodiscus wailesii.
    Kieu K; Li C; Fang Y; Cohoon G; Herrera OD; Hildebrand M; Sandhage KH; Norwood RA
    Opt Express; 2014 Jun; 22(13):15992-9. PubMed ID: 24977855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Manipulation and Micromechanical Characterization of Diatom Frustule Constituents Using Focused Ion Beam Scanning Electron Microscopy.
    Soleimani M; van Breemen LCA; Maddala SP; Joosten RRM; Wu H; Schreur-Piet I; van Benthem RATM; Friedrich H
    Small Methods; 2021 Dec; 5(12):e2100638. PubMed ID: 34928031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of a Broad Range of Polypeptides on the Frustule of the Diatom
    Shimakawa G; Katayama S; Tsuji Y; Yoneda K; Fukuda W; Fujiwara S; Matsuda Y
    Appl Environ Microbiol; 2022 Nov; 88(21):e0115322. PubMed ID: 36226967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process.
    Jeffryes C; Gutu T; Jiao J; Rorrer GL
    ACS Nano; 2008 Oct; 2(10):2103-12. PubMed ID: 19206457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diatom Frustule Morphogenesis and Function: a Multidisciplinary Survey.
    De Tommasi E; Gielis J; Rogato A
    Mar Genomics; 2017 Oct; 35():1-18. PubMed ID: 28734733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of the living diatom Thalassiosira weissflogii with thiol moieties.
    Lang Y; del Monte F; Collins L; Rodriguez BJ; Thompson K; Dockery P; Finn DP; Pandit A
    Nat Commun; 2013; 4():2683. PubMed ID: 24177724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in the optical properties of valve and girdle band in a centric diatom.
    Goessling JW; Su Y; Maibohm C; Ellegaard M; Kühl M
    Interface Focus; 2019 Feb; 9(1):20180031. PubMed ID: 30603064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum.
    Qin T; Gutu T; Jiao J; Chang CH; Rorrer GL
    J Nanosci Nanotechnol; 2008 May; 8(5):2392-8. PubMed ID: 18572654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.