These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26858812)

  • 1. Enhancement of microfluidic particle separation using cross-flow filters with hydrodynamic focusing.
    Chiu YY; Huang CK; Lu YW
    Biomicrofluidics; 2016 Jan; 10(1):011906. PubMed ID: 26858812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tapered Microfluidic for Continuous Micro-Object Separation Based on Hydrodynamic Principle.
    Ahmad IL; Ahmad MR; Takeuchi M; Nakajima M; Hasegawa Y
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1413-1421. PubMed ID: 29293427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial Focusing of Microparticles in Curvilinear Microchannels.
    Özbey A; Karimzadehkhouei M; Akgönül S; Gozuacik D; Koşar A
    Sci Rep; 2016 Dec; 6():38809. PubMed ID: 27991494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplified 3D hydrodynamic flow focusing for lab-on-chip single particle study.
    Storti F; Bonfadini S; Criante L
    Sci Rep; 2023 Sep; 13(1):14671. PubMed ID: 37673905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable hydrodynamic focusing with dual-neodymium magnet-based microfluidic separation device.
    Al-Zareer M
    Med Biol Eng Comput; 2022 Jan; 60(1):47-60. PubMed ID: 34693497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-flow size-based separation of microparticles by microchip electromagnetophoresis.
    Fukui Y; Iiguni Y; Kitagawa S; Ohtani H
    Anal Sci; 2015; 31(3):197-203. PubMed ID: 25765274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-sorting centrifugal microfluidic chip with a flow rectifier.
    Ma J; Wu Y; Liu Y; Ji Y; Yang M; Zhu H
    Lab Chip; 2021 Jun; 21(11):2129-2141. PubMed ID: 33928337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sheathless and high throughput sorting of paramagnetic microparticles in a magneto-hydrodynamic microfluidic device.
    Kumar V; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():473-476. PubMed ID: 28268374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification.
    Huh D; Bahng JH; Ling Y; Wei HH; Kripfgans OD; Fowlkes JB; Grotberg JB; Takayama S
    Anal Chem; 2007 Feb; 79(4):1369-76. PubMed ID: 17297936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Radial Pillar Device (RAPID) for continuous and high-throughput separation of multi-sized particles.
    Mehendale N; Sharma O; D'Costa C; Paul D
    Biomed Microdevices; 2017 Nov; 20(1):6. PubMed ID: 29185049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sheath-assisted versus sheathless dielectrophoretic particle separation.
    Dalili A; Hoorfar M
    Electrophoresis; 2021 Aug; 42(16):1570-1577. PubMed ID: 34196426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sheath-less high throughput inertial separation of small microparticles in spiral microchannels with trapezoidal cross-section.
    Al-Halhouli A; Albagdady A; Dietzel A
    RSC Adv; 2019 Dec; 9(71):41970-41976. PubMed ID: 35541623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration.
    Cheng Y; Wang Y; Ma Z; Wang W; Ye X
    Lab Chip; 2016 Nov; 16(23):4517-4526. PubMed ID: 27792227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sheathless Focusing and Separation of Microparticles Using Tilted-Angle Traveling Surface Acoustic Waves.
    Ahmed H; Destgeer G; Park J; Afzal M; Sung HJ
    Anal Chem; 2018 Jul; 90(14):8546-8552. PubMed ID: 29911381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.