These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 26858990)

  • 1. Microfluidics: A new tool for modeling cancer-immune interactions.
    Boussommier-Calleja A; Li R; Chen MB; Wong SC; Kamm RD
    Trends Cancer; 2016 Jan; 2(1):6-19. PubMed ID: 26858990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ-on-a-chip models for development of cancer immunotherapies.
    Chernyavska M; Masoudnia M; Valerius T; Verdurmen WPR
    Cancer Immunol Immunother; 2023 Dec; 72(12):3971-3983. PubMed ID: 37923890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic technologies for immunotherapy studies on solid tumours.
    Paterson K; Zanivan S; Glasspool R; Coffelt SB; Zagnoni M
    Lab Chip; 2021 Jun; 21(12):2306-2329. PubMed ID: 34085677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going with the Flow: Modeling the Tumor Microenvironment Using Microfluidic Technology.
    Xie H; Appelt JW; Jenkins RW
    Cancers (Basel); 2021 Dec; 13(23):. PubMed ID: 34885161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles.
    Ozcelikkale A; Moon HR; Linnes M; Han B
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Sep; 9(5):. PubMed ID: 28198106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening.
    Brooks A; Zhang Y; Chen J; Zhao CX
    Adv Healthc Mater; 2024 Aug; 13(21):e2302436. PubMed ID: 38224141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment.
    Zhang J; Tavakoli H; Ma L; Li X; Han L; Li X
    Adv Drug Deliv Rev; 2022 Aug; 187():114365. PubMed ID: 35667465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies.
    Hakim M; Kermanshah L; Abouali H; Hashemi HM; Yari A; Khorasheh F; Alemzadeh I; Vossoughi M
    Biophys Rev; 2022 Apr; 14(2):517-543. PubMed ID: 35528034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment.
    Ravi K; Manoharan TJM; Wang KC; Pockaj B; Nikkhah M
    Biomaterials; 2024 Mar; 305():122428. PubMed ID: 38147743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic systems to study tissue barriers to immunotherapy.
    Ramirez A; Amosu M; Lee P; Maisel K
    Drug Deliv Transl Res; 2021 Dec; 11(6):2414-2429. PubMed ID: 34215998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microphysiological Systems for Cancer Immunotherapy Research and Development.
    Peng Y; Lee E
    Adv Biol (Weinh); 2024 Aug; 8(8):e2300077. PubMed ID: 37409385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions.
    Bale SS; Borenstein JT
    Drug Metab Dispos; 2018 Nov; 46(11):1638-1646. PubMed ID: 30115643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic design in single-cell sequencing and application to cancer precision medicine.
    Han X; Xu X; Yang C; Liu G
    Cell Rep Methods; 2023 Sep; 3(9):100591. PubMed ID: 37725985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-based technologies in cancer liquid biopsy: Unveiling the role of horizontal gene transfer (HGT) materials.
    Haghjooy Javanmard S; Rafiee L; Bahri Najafi M; Khorsandi D; Hasan A; Vaseghi G; Makvandi P
    Environ Res; 2023 Dec; 238(Pt 1):117083. PubMed ID: 37690629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Microfluidic and Biosensor Technologies for Improved Cancer Theranostics.
    Caballero D; Abreu CM; Reis RL; Kundu SC
    Adv Exp Med Biol; 2022; 1379():461-495. PubMed ID: 35761004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic devices: The application in TME modeling and the potential in immunotherapy optimization.
    Li Y; Fan H; Ding J; Xu J; Liu C; Wang H
    Front Genet; 2022; 13():969723. PubMed ID: 36159996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex Vivo Tumor-on-a-Chip Platforms to Study Intercellular Interactions within the Tumor Microenvironment.
    Kumar V; Varghese S
    Adv Healthc Mater; 2019 Feb; 8(4):e1801198. PubMed ID: 30516355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion.
    Huang YL; Segall JE; Wu M
    Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.