These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26859391)

  • 1. Cortical Mechanisms of Central Fatigue and Sense of Effort.
    Sharples SA; Gould JA; Vandenberk MS; Kalmar JM
    PLoS One; 2016; 11(2):e0149026. PubMed ID: 26859391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA; Butler SL
    Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased corticospinal excitability after 5 Hz rTMS over the human supplementary motor area.
    Matsunaga K; Maruyama A; Fujiwara T; Nakanishi R; Tsuji S; Rothwell JC
    J Physiol; 2005 Jan; 562(Pt 1):295-306. PubMed ID: 15513947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue.
    Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL
    Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.
    Uehara K; Morishita T; Kubota S; Funase K
    Behav Brain Res; 2013 Mar; 240():33-45. PubMed ID: 23174210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further evidence for excitability changes in human primary motor cortex during ipsilateral voluntary contractions.
    Liang N; Murakami T; Funase K; Narita T; Kasai T
    Neurosci Lett; 2008 Mar; 433(2):135-40. PubMed ID: 18261851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of the motor cortex and corticospinal tract to assess human muscle fatigue.
    Gruet M; Temesi J; Rupp T; Levy P; Millet GY; Verges S
    Neuroscience; 2013 Feb; 231():384-99. PubMed ID: 23131709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of fatiguing unilateral plantar flexions on corticospinal and transcallosal inhibition in the primary motor hand area.
    Matsuura R; Ogata T
    J Physiol Anthropol; 2015 Feb; 34(1):4. PubMed ID: 25857538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue suppresses ipsilateral intracortical facilitation.
    Bäumer T; Münchau A; Weiller C; Liepert J
    Exp Brain Res; 2002 Oct; 146(4):467-73. PubMed ID: 12355275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction.
    Turco CV; Fassett HJ; Locke MB; El-Sayes J; Nelson AJ
    J Neurophysiol; 2019 Jul; 122(1):368-377. PubMed ID: 31116626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in motor cortical excitability induced by high-frequency repetitive transcranial magnetic stimulation of different stimulation durations.
    Jung SH; Shin JE; Jeong YS; Shin HI
    Clin Neurophysiol; 2008 Jan; 119(1):71-9. PubMed ID: 18039593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference.
    Zoghi M; Nordstrom MA
    Exp Brain Res; 2007 Feb; 177(2):266-74. PubMed ID: 16947062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paired-pulse rTMS at trans-synaptic intervals increases corticomotor excitability and reduces the rate of force loss during a fatiguing exercise of the hand.
    Benwell NM; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Nov; 175(4):626-32. PubMed ID: 16783555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation.
    Kumru H; Albu S; Rothwell J; Leon D; Flores C; Opisso E; Tormos JM; Valls-Sole J
    Clin Neurophysiol; 2017 Oct; 128(10):2043-2047. PubMed ID: 28858700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fatigue decreases short-interval intracortical inhibition after exhaustive intermittent tasks.
    Maruyama A; Matsunaga K; Tanaka N; Rothwell JC
    Clin Neurophysiol; 2006 Apr; 117(4):864-70. PubMed ID: 16495147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans.
    Quartarone A; Rizzo V; Bagnato S; Morgante F; Sant'Angelo A; Girlanda P; Siebner HR
    J Physiol; 2006 Sep; 575(Pt 2):657-70. PubMed ID: 16825301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects on the right motor hand-area excitability produced by low-frequency rTMS over human contralateral homologous cortex.
    Gilio F; Rizzo V; Siebner HR; Rothwell JC
    J Physiol; 2003 Sep; 551(Pt 2):563-73. PubMed ID: 12821724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.
    Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A
    Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.