These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26859422)

  • 1. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL.
    Tohyama R; Kayamori K; Sato K; Hamagaki M; Sakamoto K; Yasuda H; Yamaguchi A
    J Oral Pathol Med; 2016 May; 45(5):356-64. PubMed ID: 26859422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction.
    Oue E; Lee JW; Sakamoto K; Iimura T; Aoki K; Kayamori K; Michi Y; Yamashiro M; Harada K; Amagasa T; Yamaguchi A
    Biochem Biophys Res Commun; 2012 Aug; 424(3):456-61. PubMed ID: 22771802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RANKL synthesized by both stromal cells and cancer cells plays a crucial role in osteoclastic bone resorption induced by oral cancer.
    Sato K; Lee JW; Sakamoto K; Iimura T; Kayamori K; Yasuda H; Shindoh M; Ito M; Omura K; Yamaguchi A
    Am J Pathol; 2013 May; 182(5):1890-9. PubMed ID: 23499553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor-β synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma.
    Nakamura R; Kayamori K; Oue E; Sakamoto K; Harada K; Yamaguchi A
    Biochem Biophys Res Commun; 2015 Mar; 458(4):777-82. PubMed ID: 25681764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insulin-like growth factor-II mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma.
    Hwang YS; Ahn SY; Moon S; Zheng Z; Cha IH; Kim J; Zhang X
    Arch Oral Biol; 2016 Sep; 69():25-32. PubMed ID: 27232357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of YM529 on a model of mandibular invasion by oral squamous cell carcinoma in mice.
    Cui N; Nomura T; Noma H; Yokoo K; Takagi R; Hashimoto S; Okamoto M; Sato M; Yu G; Guo C; Shibahala T
    Clin Cancer Res; 2005 Apr; 11(7):2713-9. PubMed ID: 15814653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of cancer stroma for bone destruction in oral squamous cell carcinoma using different cancer stroma subtypes.
    Shan Q; Takabatake K; Kawai H; Oo MW; Inada Y; Sukegawa S; Fushimi S; Nakano K; Nagatsuka H
    Oncol Rep; 2022 Apr; 47(4):. PubMed ID: 35211756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inhibition of NF-κB suppresses bone invasion by oral squamous cell carcinoma in vivo.
    Furuta H; Osawa K; Shin M; Ishikawa A; Matsuo K; Khan M; Aoki K; Ohya K; Okamoto M; Tominaga K; Takahashi T; Nakanishi O; Jimi E
    Int J Cancer; 2012 Sep; 131(5):E625-35. PubMed ID: 22262470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells.
    Shin M; Matsuo K; Tada T; Fukushima H; Furuta H; Ozeki S; Kadowaki T; Yamamoto K; Okamoto M; Jimi E
    Carcinogenesis; 2011 Nov; 32(11):1634-40. PubMed ID: 21890459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoregulation of RANK ligand in oral squamous cell carcinoma tumor cells.
    Sambandam Y; Ethiraj P; Hathaway-Schrader JD; Novince CM; Panneerselvam E; Sundaram K; Reddy SV
    J Cell Physiol; 2018 Aug; 233(8):6125-6134. PubMed ID: 29323724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma.
    Park J; Kim HJ; Kim KR; Lee SK; Kim H; Park KK; Chung WY
    Oncotarget; 2017 Feb; 8(6):9079-9092. PubMed ID: 28030842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells.
    Kayamori K; Sakamoto K; Nakashima T; Takayanagi H; Morita K; Omura K; Nguyen ST; Miki Y; Iimura T; Himeno A; Akashi T; Yamada-Okabe H; Ogata E; Yamaguchi A
    Am J Pathol; 2010 Feb; 176(2):968-80. PubMed ID: 20035059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Osteoclastic bone destruction and its regulating factors in oral squamous cell carcinoma].
    Cui NH; Zhang W; Wang EB; Wei MJ; Guo CB; Yu GY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2007 Feb; 39(1):30-2. PubMed ID: 17304322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of different osteoclast phenotypes in the progression of bone invasion by oral squamous cell carcinoma.
    Quan J; Hou Y; Long W; Ye S; Wang Z
    Oncol Rep; 2018 Mar; 39(3):1043-1051. PubMed ID: 29286135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss.
    Zhang X; Junior CR; Liu M; Li F; D'Silva NJ; Kirkwood KL
    Oral Oncol; 2013 Feb; 49(2):119-28. PubMed ID: 22989723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of bone resorption in novel in vitro and in vivo models of oral squamous cell carcinoma.
    Martin CK; Dirksen WP; Shu ST; Werbeck JL; Thudi NK; Yamaguchi M; Wolfe TD; Heller KN; Rosol TJ
    Oral Oncol; 2012 Jun; 48(6):491-9. PubMed ID: 22265717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-mobility group box 1 induces bone destruction associated with advanced oral squamous cancer via RAGE and TLR4.
    Sakamoto Y; Okui T; Yoneda T; Ryumon S; Nakamura T; Kawai H; Kunisada Y; Ibaragi S; Masui M; Ono K; Obata K; Shimo T; Sasaki A
    Biochem Biophys Res Commun; 2020 Oct; 531(3):422-430. PubMed ID: 32800556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma.
    Martin CK; Werbeck JL; Thudi NK; Lanigan LG; Wolfe TD; Toribio RE; Rosol TJ
    Cancer Res; 2010 Nov; 70(21):8607-16. PubMed ID: 20959474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MCP-1 as a potential target to inhibit the bone invasion by oral squamous cell carcinoma.
    Quan J; Morrison NA; Johnson NW; Gao J
    J Cell Biochem; 2014 Oct; 115(10):1787-98. PubMed ID: 24905457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas.
    Ishikuro M; Sakamoto K; Kayamori K; Akashi T; Kanda H; Izumo T; Yamaguchi A
    Bone; 2008 Sep; 43(3):621-7. PubMed ID: 18585993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.