BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 26859576)

  • 1. Targeting hypoxic response for cancer therapy.
    Paolicchi E; Gemignani F; Krstic-Demonacos M; Dedhar S; Mutti L; Landi S
    Oncotarget; 2016 Mar; 7(12):13464-78. PubMed ID: 26859576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic Targeting Hypoxia-Inducible Factor (HIF-1) in Cancer: Cutting Gordian Knot of Cancer Cell Metabolism.
    Sharma A; Sinha S; Shrivastava N
    Front Genet; 2022; 13():849040. PubMed ID: 35432450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural compounds regulate glycolysis in hypoxic tumor microenvironment.
    Gao JL; Chen YG
    Biomed Res Int; 2015; 2015():354143. PubMed ID: 25685782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances In Developing Novel Anti-Cancer Drugs Targeting Tumor Hypoxic and Acidic Microenvironments.
    Li W; Sun X
    Recent Pat Anticancer Drug Discov; 2018; 13(4):455-468. PubMed ID: 30173649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anticancer strategies based on the metabolic profile of tumor cells: therapeutic targeting of the Warburg effect.
    Chen XS; Li LY; Guan YD; Yang JM; Cheng Y
    Acta Pharmacol Sin; 2016 Aug; 37(8):1013-9. PubMed ID: 27374491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose metabolism in gastric cancer: The cutting-edge.
    Yuan LW; Yamashita H; Seto Y
    World J Gastroenterol; 2016 Feb; 22(6):2046-59. PubMed ID: 26877609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An update on therapeutic opportunities offered by cancer glycolytic metabolism.
    Granchi C; Fancelli D; Minutolo F
    Bioorg Med Chem Lett; 2014 Nov; 24(21):4915-25. PubMed ID: 25288186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids.
    Marín-Hernández Á; Gallardo-Pérez JC; Hernández-Reséndiz I; Del Mazo-Monsalvo I; Robledo-Cadena DX; Moreno-Sánchez R; Rodríguez-Enríquez S
    J Cell Physiol; 2017 Jun; 232(6):1346-1359. PubMed ID: 27661776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Microenvironment of Lung Cancer and Therapeutic Implications.
    Mittal V; El Rayes T; Narula N; McGraw TE; Altorki NK; Barcellos-Hoff MH
    Adv Exp Med Biol; 2016; 890():75-110. PubMed ID: 26703800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of tumor oxygenation and their influence on the cellular hypoxic response and hypoxia-directed therapies.
    Magagnin MG; Koritzinsky M; Wouters BG
    Drug Resist Updat; 2006; 9(4-5):185-97. PubMed ID: 16926105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycolysis inhibition for anticancer treatment.
    Pelicano H; Martin DS; Xu RH; Huang P
    Oncogene; 2006 Aug; 25(34):4633-46. PubMed ID: 16892078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.
    Shi Y; Liu S; Ahmad S; Gao Q
    Curr Top Med Chem; 2018; 18(6):454-466. PubMed ID: 29788889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia and cancer cell metabolism.
    Huang D; Li C; Zhang H
    Acta Biochim Biophys Sin (Shanghai); 2014 Mar; 46(3):214-9. PubMed ID: 24389642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Deoxyglucose induces the expression of thioredoxin interacting protein (TXNIP) by increasing O-GlcNAcylation - Implications for targeting the Warburg effect in cancer cells.
    Hong SY; Hagen T
    Biochem Biophys Res Commun; 2015 Oct; 465(4):838-44. PubMed ID: 26315267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia.
    Xu RH; Pelicano H; Zhou Y; Carew JS; Feng L; Bhalla KN; Keating MJ; Huang P
    Cancer Res; 2005 Jan; 65(2):613-21. PubMed ID: 15695406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment.
    Pistollato F; Giampieri F; Battino M
    Food Chem Toxicol; 2015 Jan; 75():58-70. PubMed ID: 25445513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer stem cells and mesenchymal stem cells in the hypoxic tumor niche: two different targets for one only drug.
    Bonafè F; Guarnieri C; Muscari C
    Med Hypotheses; 2015 Mar; 84(3):227-30. PubMed ID: 25620576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.