These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26859760)

  • 21. Docosahexaenoic acid promotes dopaminergic differentiation in induced pluripotent stem cells and inhibits teratoma formation in rats with Parkinson-like pathology.
    Chang YL; Chen SJ; Kao CL; Hung SC; Ding DC; Yu CC; Chen YJ; Ku HH; Lin CP; Lee KH; Chen YC; Wang JJ; Hsu CC; Chen LK; Li HY; Chiou SH
    Cell Transplant; 2012; 21(1):313-32. PubMed ID: 21669041
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microanatomical evidences for potential of mesenchymal stem cells in amelioration of striatal degeneration.
    Amin EM; Reza BA; Morteza BR; Maryam MM; Ali M; Zeinab N
    Neurol Res; 2008 Dec; 30(10):1086-90. PubMed ID: 18768110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stem cell transplantation for Huntington's diseases.
    Choi KA; Choi Y; Hong S
    Methods; 2018 Jan; 133():104-112. PubMed ID: 28867501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models.
    Lin YT; Chern Y; Shen CK; Wen HL; Chang YC; Li H; Cheng TH; Hsieh-Li HM
    PLoS One; 2011; 6(8):e22924. PubMed ID: 21850243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease.
    Choi KA; Hwang I; Park HS; Oh SI; Kang S; Hong S
    Biotechnol J; 2014 Jul; 9(7):882-94. PubMed ID: 24827816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer.
    Bemelmans AP; Horellou P; Pradier L; Brunet I; Colin P; Mallet J
    Hum Gene Ther; 1999 Dec; 10(18):2987-97. PubMed ID: 10609659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease.
    Bantubungi K; Blum D; Cuvelier L; Wislet-Gendebien S; Rogister B; Brouillet E; Schiffmann SN
    Mol Cell Neurosci; 2008 Mar; 37(3):454-70. PubMed ID: 18083596
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats.
    Tatarishvili J; Oki K; Monni E; Koch P; Memanishvili T; Buga AM; Verma V; Popa-Wagner A; Brüstle O; Lindvall O; Kokaia Z
    Restor Neurol Neurosci; 2014; 32(4):547-58. PubMed ID: 24916776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adult neurotrophic factor-secreting stem cells: a potential novel therapy for neurodegenerative diseases.
    Sadan O; Shemesh N; Cohen Y; Melamed E; Offen D
    Isr Med Assoc J; 2009 Apr; 11(4):201-4. PubMed ID: 19603590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Salvia miltiorrhiza on neural differentiation of induced pluripotent stem cells.
    Shu T; Pang M; Rong L; Zhou W; Wang J; Liu C; Wang X
    J Ethnopharmacol; 2014 Apr; 153(1):233-41. PubMed ID: 24568774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implantation of the clinical-grade human neural stem cell line, CTX0E03, rescues the behavioral and pathological deficits in the quinolinic acid-lesioned rodent model of Huntington's disease.
    Yoon Y; Kim HS; Jeon I; Noh JE; Park HJ; Lee S; Park IH; Stevanato L; Hicks C; Corteling R; Barker RA; Sinden JD; Song J
    Stem Cells; 2020 Aug; 38(8):936-947. PubMed ID: 32374064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Behavior characterization of a model of Huntington's disease in rats, induced by quinolinic acid].
    Francis L; Cruz R; Antúnez I; Rosillo JC
    Rev Neurol; 2000 Jun 1-15; 30(11):1016-21. PubMed ID: 10904945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proactive transplantation of human neural stem cells prevents degeneration of striatal neurons in a rat model of Huntington disease.
    Ryu JK; Kim J; Cho SJ; Hatori K; Nagai A; Choi HB; Lee MC; McLarnon JG; Kim SU
    Neurobiol Dis; 2004 Jun; 16(1):68-77. PubMed ID: 15207263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease.
    Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD
    Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain.
    Oki K; Tatarishvili J; Wood J; Koch P; Wattananit S; Mine Y; Monni E; Tornero D; Ahlenius H; Ladewig J; Brüstle O; Lindvall O; Kokaia Z
    Stem Cells; 2012 Jun; 30(6):1120-33. PubMed ID: 22495829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of transplant efficiency between spontaneously derived and noggin-primed human embryonic stem cell neural precursors in the quinolinic acid rat model of Huntington's disease.
    Vazey EM; Dottori M; Jamshidi P; Tomas D; Pera MF; Horne M; Connor B
    Cell Transplant; 2010; 19(8):1055-62. PubMed ID: 20350346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological and cellular changes within embryonic striatal grafts associated with enriched environment and involuntary exercise.
    Döbrössy MD; Dunnett SB
    Eur J Neurosci; 2006 Dec; 24(11):3223-33. PubMed ID: 17156383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington's disease in rats: protective role of iron porphyrinate 5,10,15,20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III).
    Pérez-De La Cruz V; González-Cortés C; Galván-Arzate S; Medina-Campos ON; Pérez-Severiano F; Ali SF; Pedraza-Chaverrí J; Santamaría A
    Neuroscience; 2005; 135(2):463-74. PubMed ID: 16111817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human iPSC-derived neural precursor cells differentiate into multiple cell types to delay disease progression following transplantation into YAC128 Huntington's disease mouse model.
    Park HJ; Jeon J; Choi J; Kim JY; Kim HS; Huh JY; Goldman SA; Song J
    Cell Prolif; 2021 Aug; 54(8):e13082. PubMed ID: 34152047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slowed progression in models of Huntington disease by adipose stem cell transplantation.
    Lee ST; Chu K; Jung KH; Im WS; Park JE; Lim HC; Won CH; Shin SH; Lee SK; Kim M; Roh JK
    Ann Neurol; 2009 Nov; 66(5):671-81. PubMed ID: 19938161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.