These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 26860066)
41. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism. Sun W; Ubierna N; Ma JY; Cousins AB Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455 [TBL] [Abstract][Full Text] [Related]
42. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). Galmés J; Andralojc PJ; Kapralov MV; Flexas J; Keys AJ; Molins A; Parry MA; Conesa MÀ New Phytol; 2014 Aug; 203(3):989-99. PubMed ID: 24861241 [TBL] [Abstract][Full Text] [Related]
43. Phenotypic differences determine drought stress responses in ecotypes of Arundo donax adapted to different environments. Ahrar M; Doneva D; Tattini M; Brunetti C; Gori A; Rodeghiero M; Wohlfahrt G; Biasioli F; Varotto C; Loreto F; Velikova V J Exp Bot; 2017 Apr; 68(9):2439-2451. PubMed ID: 28449129 [TBL] [Abstract][Full Text] [Related]
44. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation. Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641 [TBL] [Abstract][Full Text] [Related]
45. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Flexas J; Medrano H Ann Bot; 2002 Feb; 89(2):183-9. PubMed ID: 12099349 [TBL] [Abstract][Full Text] [Related]
46. Unexpected reversal of C Reich PB; Hobbie SE; Lee TD; Pastore MA Science; 2018 Apr; 360(6386):317-320. PubMed ID: 29674593 [TBL] [Abstract][Full Text] [Related]
47. Differences in drought sensitivities and photosynthetic limitations between co-occurring C3 and C4 (NADP-ME) Panicoid grasses. Ripley B; Frole K; Gilbert M Ann Bot; 2010 Mar; 105(3):493-503. PubMed ID: 20106844 [TBL] [Abstract][Full Text] [Related]
48. Computational modelling predicts substantial carbon assimilation gains for C3 plants with a single-celled C4 biochemical pump. Jurić I; Hibberd JM; Blatt M; Burroughs NJ PLoS Comput Biol; 2019 Sep; 15(9):e1007373. PubMed ID: 31568503 [TBL] [Abstract][Full Text] [Related]
49. Bundle sheath chloroplast volume can house sufficient Rubisco to avoid limiting C4 photosynthesis during chilling. Pignon CP; Lundgren MR; Osborne CP; Long SP J Exp Bot; 2019 Jan; 70(1):357-365. PubMed ID: 30407578 [TBL] [Abstract][Full Text] [Related]
50. Mesophyll conductance response to short-term changes in pCO Pathare VS; DiMario RJ; Koteyeva N; Cousins AB New Phytol; 2022 Nov; 236(4):1281-1295. PubMed ID: 35959528 [TBL] [Abstract][Full Text] [Related]
51. Balancing trade-offs: Enhanced carbon assimilation and productivity with reduced nutritional value in a well-watered C Habermann E; Dias de Oliveira EA; Bianconi ME; Contin DR; Lemos MTO; Costa JVCP; Oliveira KS; Riul BN; Bonifácio-Anacleto F; Viciedo DO; Approbato AU; Alzate-Marin AL; Prado RM; Costa KAP; Martinez CA Plant Physiol Biochem; 2024 Feb; 207():108408. PubMed ID: 38367386 [TBL] [Abstract][Full Text] [Related]
53. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. Cornic G; Fresneau C Ann Bot; 2002 Jun; 89 Spec No(7):887-94. PubMed ID: 12102514 [TBL] [Abstract][Full Text] [Related]
54. Bundle-sheath leakiness and intrinsic water use efficiency of a perennial C4 grass are increased at high vapour pressure deficit during growth. Gong XY; Schäufele R; Schnyder H J Exp Bot; 2017 Jan; 68(2):321-333. PubMed ID: 27864539 [TBL] [Abstract][Full Text] [Related]
55. Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species. Bräutigam A; Schliesky S; Külahoglu C; Osborne CP; Weber AP J Exp Bot; 2014 Jul; 65(13):3579-93. PubMed ID: 24642845 [TBL] [Abstract][Full Text] [Related]
56. Variation in photosynthetic induction between rice accessions and its potential for improving productivity. Acevedo-Siaca LG; Coe R; Wang Y; Kromdijk J; Quick WP; Long SP New Phytol; 2020 Aug; 227(4):1097-1108. PubMed ID: 32124982 [TBL] [Abstract][Full Text] [Related]
57. Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. Urban O; Sprtová M; Kosvancová M; Tomásková I; Lichtenthaler HK; Marek MV Tree Physiol; 2008 Aug; 28(8):1189-97. PubMed ID: 18519250 [TBL] [Abstract][Full Text] [Related]
58. The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plants. Cocozza C; Brilli F; Pignattelli S; Pollastri S; Brunetti C; Gonnelli C; Tognetti R; Centritto M; Loreto F Plant Physiol Biochem; 2020 Jun; 151():556-565. PubMed ID: 32315911 [TBL] [Abstract][Full Text] [Related]
59. Photosynthetic resource-use efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C Arslan AM; Wang X; Liu BY; Xu YN; Li L; Gong XY Plant Physiol Biochem; 2023 Apr; 197():107666. PubMed ID: 37001304 [TBL] [Abstract][Full Text] [Related]
60. Photosynthetic limitation of several representative subalpine species in the Catalan Pyrenees in summer. Fernàndez-Martínez J; Fleck I Plant Biol (Stuttg); 2016 Jul; 18(4):638-48. PubMed ID: 26833754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]