BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26860319)

  • 1. LowMACA: exploiting protein family analysis for the identification of rare driver mutations in cancer.
    Melloni GE; de Pretis S; Riva L; Pelizzola M; Céol A; Costanza J; Müller H; Zammataro L
    BMC Bioinformatics; 2016 Feb; 17():80. PubMed ID: 26860319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors.
    Baeissa H; Benstead-Hume G; Richardson CJ; Pearl FMG
    Oncotarget; 2017 Mar; 8(13):21290-21304. PubMed ID: 28423505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CorMut: an R/Bioconductor package for computing correlated mutations based on selection pressure.
    Li Z; Huang Y; Ouyang Y; Jiao Y; Xing H; Liao L; Jiang S; Shao Y; Ma L
    Bioinformatics; 2014 Jul; 30(14):2073-5. PubMed ID: 24681904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein domain-level landscape of cancer-type-specific somatic mutations.
    Yang F; Petsalaki E; Rolland T; Hill DE; Vidal M; Roth FP
    PLoS Comput Biol; 2015 Mar; 11(3):e1004147. PubMed ID: 25794154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A spatial simulation approach to account for protein structure when identifying non-random somatic mutations.
    Ryslik GA; Cheng Y; Cheung KH; Bjornson RD; Zelterman D; Modis Y; Zhao H
    BMC Bioinformatics; 2014 Jul; 15():231. PubMed ID: 24990767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging protein quaternary structure to identify oncogenic driver mutations.
    Ryslik GA; Cheng Y; Modis Y; Zhao H
    BMC Bioinformatics; 2016 Mar; 17():137. PubMed ID: 27001666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying cancer driver genes in tumor genome sequencing studies.
    Youn A; Simon R
    Bioinformatics; 2011 Jan; 27(2):175-81. PubMed ID: 21169372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets.
    Gao J; Chang MT; Johnsen HC; Gao SP; Sylvester BE; Sumer SO; Zhang H; Solit DB; Taylor BS; Schultz N; Sander C
    Genome Med; 2017 Jan; 9(1):4. PubMed ID: 28115009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity.
    Chang MT; Asthana S; Gao SP; Lee BH; Chapman JS; Kandoth C; Gao J; Socci ND; Solit DB; Olshen AB; Schultz N; Taylor BS
    Nat Biotechnol; 2016 Feb; 34(2):155-63. PubMed ID: 26619011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Snowball: resampling combined with distance-based regression to discover transcriptional consequences of a driver mutation.
    Xu Y; Guo X; Sun J; Zhao Z
    Bioinformatics; 2015 Jan; 31(1):84-93. PubMed ID: 25192743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive identification of mutational cancer driver genes across 12 tumor types.
    Tamborero D; Gonzalez-Perez A; Perez-Llamas C; Deu-Pons J; Kandoth C; Reimand J; Lawrence MS; Getz G; Bader GD; Ding L; Lopez-Bigas N
    Sci Rep; 2013 Oct; 3():2650. PubMed ID: 24084849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain landscapes of somatic mutations in cancer.
    Nehrt NL; Peterson TA; Park D; Kann MG
    BMC Genomics; 2012 Jun; 13 Suppl 4(Suppl 4):S9. PubMed ID: 22759657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancerouspdomains: comprehensive analysis of cancer type-specific recurrent somatic mutations in proteins and domains.
    Hashemi S; Nowzari Dalini A; Jalali A; Banaei-Moghaddam AM; Razaghi-Moghadam Z
    BMC Bioinformatics; 2017 Aug; 18(1):370. PubMed ID: 28814324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SomInaClust: detection of cancer genes based on somatic mutation patterns of inactivation and clustering.
    Van den Eynden J; Fierro AC; Verbeke LP; Marchal K
    BMC Bioinformatics; 2015 Apr; 16():125. PubMed ID: 25903787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.