BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26860459)

  • 1. Cortisol promotes endoplasmic glucose production via pyridine nucleotide redox.
    Wang Z; Mick GJ; Xie R; Wang X; Xie X; Li G; McCormick KL
    J Endocrinol; 2016 Apr; 229(1):25-36. PubMed ID: 26860459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manifold effects of palmitoylcarnitine on endoplasmic reticulum metabolism: 11β-hydroxysteroid dehydrogenase 1, flux through hexose-6-phosphate dehydrogenase and NADPH concentration.
    Wang X; Mick GJ; Maser E; McCormick K
    Biochem J; 2011 Jul; 437(1):109-15. PubMed ID: 21492096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Coupling Determines the Activity: Comparison of 11β-Hydroxysteroid Dehydrogenase 1 and Its Coupling between Liver Parenchymal Cells and Testicular Leydig Cells.
    Li X; Hu G; Li X; Wang YY; Hu YY; Zhou H; Latif SA; Morris DJ; Chu Y; Zheng Z; Ge RS
    PLoS One; 2015; 10(11):e0141767. PubMed ID: 26528718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that adrenal hexose-6-phosphate dehydrogenase can effect microsomal P450 cytochrome steroidogenic enzymes.
    Foster CA; Mick GJ; Wang X; McCormick K
    Biochim Biophys Acta; 2013 Sep; 1833(9):2039-44. PubMed ID: 23665046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency.
    Draper N; Walker EA; Bujalska IJ; Tomlinson JW; Chalder SM; Arlt W; Lavery GG; Bedendo O; Ray DW; Laing I; Malunowicz E; White PC; Hewison M; Mason PJ; Connell JM; Shackleton CH; Stewart PM
    Nat Genet; 2003 Aug; 34(4):434-9. PubMed ID: 12858176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 11beta-Hydroxysteroid Dehydrogenase Type 1 Regulation by Intracellular Glucose 6-Phosphate Provides Evidence for a Novel Link between Glucose Metabolism and Hypothalamo-Pituitary-Adrenal Axis Function.
    Walker EA; Ahmed A; Lavery GG; Tomlinson JW; Kim SY; Cooper MS; Ride JP; Hughes BA; Shackleton CHL; McKiernan P; Elias E; Chou JY; Stewart PM
    J Biol Chem; 2007 Sep; 282(37):27030-27036. PubMed ID: 17588937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct regulation of glucose and not insulin on hepatic hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1.
    Fan Z; Du H; Zhang M; Meng Z; Chen L; Liu Y
    Mol Cell Endocrinol; 2011 Feb; 333(1):62-9. PubMed ID: 21163329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperativity between 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase is based on a common pyridine nucleotide pool in the lumen of the endoplasmic reticulum.
    Czegle I; Piccirella S; Senesi S; Csala M; Mandl J; Bánhegyi G; Fulceri R; Benedetti A
    Mol Cell Endocrinol; 2006 Mar; 248(1-2):24-5. PubMed ID: 16337333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of fructose-6-phosphate to glucocorticoid activation in the endoplasmic reticulum: possible implication in the metabolic syndrome.
    Senesi S; Legeza B; Balázs Z; Csala M; Marcolongo P; Kereszturi E; Szelényi P; Egger C; Fulceri R; Mandl J; Giunti R; Odermatt A; Bánhegyi G; Benedetti A
    Endocrinology; 2010 Oct; 151(10):4830-9. PubMed ID: 20826560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The glucose-6-phosphate transporter-hexose-6-phosphate dehydrogenase-11beta-hydroxysteroid dehydrogenase type 1 system of the adipose tissue.
    Marcolongo P; Piccirella S; Senesi S; Wunderlich L; Gerin I; Mandl J; Fulceri R; Bánhegyi G; Benedetti A
    Endocrinology; 2007 May; 148(5):2487-95. PubMed ID: 17303657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of luminal NADPH in the endoplasmic reticulum promotes the survival of human neutrophil granulocytes.
    Kardon T; Senesi S; Marcolongo P; Legeza B; Bánhegyi G; Mandl J; Fulceri R; Benedetti A
    FEBS Lett; 2008 Jun; 582(13):1809-15. PubMed ID: 18472006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of microsomal cortisol production by (-)-epigallocatechin-3-gallate through a redox shift in the endoplasmic reticulum--a potential new target for treating obesity-related diseases.
    Szelényi P; Révész K; Konta L; Tüttõ A; Mandl J; Kereszturi É; Csala M
    Biofactors; 2013; 39(5):534-41. PubMed ID: 23554216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased prereceptorial glucocorticoid activating capacity in starvation due to an oxidative shift of pyridine nucleotides in the endoplasmic reticulum.
    Kereszturi É; Kálmán FS; Kardon T; Csala M; Bánhegyi G
    FEBS Lett; 2010 Nov; 584(22):4703-8. PubMed ID: 21035447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexose-6-phosphate dehydrogenase contributes to skeletal muscle homeostasis independent of 11β-hydroxysteroid dehydrogenase type 1.
    Semjonous NM; Sherlock M; Jeyasuria P; Parker KL; Walker EA; Stewart PM; Lavery GG
    Endocrinology; 2011 Jan; 152(1):93-102. PubMed ID: 21106871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncoupled redox systems in the lumen of the endoplasmic reticulum. Pyridine nucleotides stay reduced in an oxidative environment.
    Piccirella S; Czegle I; Lizák B; Margittai E; Senesi S; Papp E; Csala M; Fulceri R; Csermely P; Mandl J; Benedetti A; Bánhegyi G
    J Biol Chem; 2006 Feb; 281(8):4671-7. PubMed ID: 16373343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microsomal enzyme 17β-hydroxysteroid dehydrogenase 3 faces the cytoplasm and uses NADPH generated by glucose-6-phosphate dehydrogenase.
    Legeza B; Balázs Z; Nashev LG; Odermatt A
    Endocrinology; 2013 Jan; 154(1):205-13. PubMed ID: 23183177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11β-hydroxysteroid dehydrogenase 1.
    Odermatt A; Da Cunha T; Penno CA; Chandsawangbhuwana C; Reichert C; Wolf A; Dong M; Baker ME
    Biochem J; 2011 Jun; 436(3):621-9. PubMed ID: 21453287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of hexose-6-phosphate dehydrogenase results in reduced overall glucose consumption but does not prevent 11β-hydroxysteroid dehydrogenase-1-dependent glucocorticoid activation.
    Marbet P; Klusonova P; Birk J; Kratschmar DV; Odermatt A
    FEBS J; 2018 Nov; 285(21):3993-4004. PubMed ID: 30153376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct protein-protein interaction of 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase in the endoplasmic reticulum lumen.
    Atanasov AG; Nashev LG; Gelman L; Legeza B; Sack R; Portmann R; Odermatt A
    Biochim Biophys Acta; 2008 Aug; 1783(8):1536-43. PubMed ID: 18381077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 11beta-Hydroxysteroid dehydrogenase 1 reductase activity is dependent on a high ratio of NADPH/NADP(+) and is stimulated by extracellular glucose.
    Dzyakanchuk AA; Balázs Z; Nashev LG; Amrein KE; Odermatt A
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):137-41. PubMed ID: 18778749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.