These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26860613)

  • 1. Integrated foam fractionation for heterologous rhamnolipid production with recombinant Pseudomonas putida in a bioreactor.
    Beuker J; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Mar; 6(1):11. PubMed ID: 26860613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of rhamnolipids by integrated foam adsorption in a bioreactor system.
    Anic I; Apolonia I; Franco P; Wichmann R
    AMB Express; 2018 Jul; 8(1):122. PubMed ID: 30043199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Cell-Surface Modification for Optimized Foam Fractionation.
    Blesken CC; Bator I; Eberlein C; Heipieper HJ; Tiso T; Blank LM
    Front Bioeng Biotechnol; 2020; 8():572892. PubMed ID: 33195133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncoupling Foam Fractionation and Foam Adsorption for Enhanced Biosurfactant Synthesis and Recovery.
    Blesken CC; Strümpfler T; Tiso T; Blank LM
    Microorganisms; 2020 Dec; 8(12):. PubMed ID: 33353027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440.
    Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM
    Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440.
    Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L
    Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa.
    Heyd M; Franzreb M; Berensmeier S
    Biotechnol Prog; 2011; 27(3):706-16. PubMed ID: 21567991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and Production of Rhamnolipid from
    Haloi S; Medhi T
    Indian J Microbiol; 2022 Sep; 62(3):434-440. PubMed ID: 35974913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids.
    Wittgens A; Rosenau F
    Front Bioeng Biotechnol; 2020; 8():594010. PubMed ID: 33195161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an external foam column for
    Treinen C; Claassen L; Hoffmann M; Lilge L; Henkel M; Hausmann R
    Front Bioeng Biotechnol; 2023; 11():1264787. PubMed ID: 38026897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating temperature-induced regulation of a ROSE-like RNA-thermometer for heterologous rhamnolipid production in Pseudomonas putida KT2440.
    Noll P; Treinen C; Müller S; Senkalla S; Lilge L; Hausmann R; Henkel M
    AMB Express; 2019 Sep; 9(1):154. PubMed ID: 31555921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation.
    Sarachat T; Pornsunthorntawee O; Chavadej S; Rujiravanit R
    Bioresour Technol; 2010 Jan; 101(1):324-30. PubMed ID: 19716289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foam adsorption as an ex situ capture step for surfactants produced by fermentation.
    Anic I; Nath A; Franco P; Wichmann R
    J Biotechnol; 2017 Sep; 258():181-189. PubMed ID: 28723386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhamnolipid production by Pseudomonas aeruginosa grown on membranes of bacterial cellulose supplemented with corn bran water extract.
    Conceição KS; de Alencar Almeida M; Sawoniuk IC; Marques GD; de Sousa Faria-Tischer PC; Tischer CA; Vignoli JA; Camilios-Neto D
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30222-30231. PubMed ID: 32451891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnolipids--next generation surfactants?
    Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R
    J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida.
    Cha M; Lee N; Kim M; Kim M; Lee S
    Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foam-free production of Surfactin via anaerobic fermentation of Bacillus subtilis DSM 10(T).
    Willenbacher J; Rau JT; Rogalla J; Syldatk C; Hausmann R
    AMB Express; 2015; 5():21. PubMed ID: 25852998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer rhamnolipids by reduction of congener diversity: production and characterization.
    Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM
    Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of different Bacillus strains in respect of their ability to produce Surfactin in a model fermentation process with integrated foam fractionation.
    Willenbacher J; Zwick M; Mohr T; Schmid F; Syldatk C; Hausmann R
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9623-32. PubMed ID: 25158834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High titer heterologous rhamnolipid production.
    Beuker J; Barth T; Steier A; Wittgens A; Rosenau F; Henkel M; Hausmann R
    AMB Express; 2016 Dec; 6(1):124. PubMed ID: 27957724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.