These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 26860781)
1. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures. Dunn MR; Otto C; Fenton KE; Chaput JC ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781 [TBL] [Abstract][Full Text] [Related]
2. Structural basis for TNA synthesis by an engineered TNA polymerase. Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate. Mei H; Wang Y; Yik EJ; Chaput JC Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644 [TBL] [Abstract][Full Text] [Related]
4. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase. Mei H; Chaput JC Chem Commun (Camb); 2018 Jan; 54(10):1237-1240. PubMed ID: 29340357 [TBL] [Abstract][Full Text] [Related]
5. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription. Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966 [TBL] [Abstract][Full Text] [Related]
6. DNA polymerase-mediated DNA synthesis on a TNA template. Chaput JC; Ichida JK; Szostak JW J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469 [TBL] [Abstract][Full Text] [Related]
7. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Dunn MR; Chaput JC Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue. Mei H; Chaput J Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. Rodriguez AC; Park HW; Mao C; Beese LS J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities. Li Q; Maola VA; Chim N; Hussain J; Lozoya-Colinas A; Chaput JC J Am Chem Soc; 2021 Oct; 143(42):17761-17768. PubMed ID: 34637287 [TBL] [Abstract][Full Text] [Related]
19. Recognition of threosyl nucleotides by DNA and RNA polymerases. Kempeneers V; Vastmans K; Rozenski J; Herdewijn P Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309 [TBL] [Abstract][Full Text] [Related]