These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26860781)

  • 1. Improving Polymerase Activity with Unnatural Substrates by Sampling Mutations in Homologous Protein Architectures.
    Dunn MR; Otto C; Fenton KE; Chaput JC
    ACS Chem Biol; 2016 May; 11(5):1210-9. PubMed ID: 26860781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for TNA synthesis by an engineered TNA polymerase.
    Chim N; Shi C; Sau SP; Nikoomanzar A; Chaput JC
    Nat Commun; 2017 Nov; 8(1):1810. PubMed ID: 29180809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and polymerase recognition of a pyrrolocytidine TNA triphosphate.
    Mei H; Wang Y; Yik EJ; Chaput JC
    Biopolymers; 2021 Jan; 112(1):e23388. PubMed ID: 32615644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the chemical diversity of TNA with tUTP derivatives that are substrates for a TNA polymerase.
    Mei H; Chaput JC
    Chem Commun (Camb); 2018 Jan; 54(10):1237-1240. PubMed ID: 29340357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase-mediated synthesis of unbiased threose nucleic acid (TNA) polymers requires 7-deazaguanine to suppress G:G mispairing during TNA transcription.
    Dunn MR; Larsen AC; Zahurancik WJ; Fahmi NE; Meyers M; Suo Z; Chaput JC
    J Am Chem Soc; 2015 Apr; 137(12):4014-7. PubMed ID: 25785966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymerase-mediated DNA synthesis on a TNA template.
    Chaput JC; Ichida JK; Szostak JW
    J Am Chem Soc; 2003 Jan; 125(4):856-7. PubMed ID: 12537469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase.
    Dunn MR; Chaput JC
    Chembiochem; 2016 Oct; 17(19):1804-1808. PubMed ID: 27383648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering TNA polymerases through iterative cycles of directed evolution.
    Yik EJ; Maola VA; Chaput JC
    Methods Enzymol; 2023; 691():29-59. PubMed ID: 37914450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.
    Nikoomanzar A; Dunn MR; Chaput JC
    Anal Chem; 2017 Dec; 89(23):12622-12625. PubMed ID: 29148714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of an efficient DNA-dependent TNA polymerase.
    Horhota A; Zou K; Ichida JK; Yu B; McLaughlin LW; Szostak JW; Chaput JC
    J Am Chem Soc; 2005 May; 127(20):7427-34. PubMed ID: 15898792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TNA synthesis by DNA polymerases.
    Chaput JC; Szostak JW
    J Am Chem Soc; 2003 Aug; 125(31):9274-5. PubMed ID: 12889939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed Allelic Mutagenesis of a DNA Polymerase with Single Amino Acid Resolution.
    Nikoomanzar A; Vallejo D; Yik EJ; Chaput JC
    ACS Synth Biol; 2020 Jul; 9(7):1873-1881. PubMed ID: 32531152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Scalable Synthesis of α-L-Threose Nucleic Acid Monomers.
    Sau SP; Fahmi NE; Liao JY; Bala S; Chaput JC
    J Org Chem; 2016 Mar; 81(6):2302-7. PubMed ID: 26895480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a Fluorescent Cytidine TNA Triphosphate Analogue.
    Mei H; Chaput J
    Methods Mol Biol; 2019; 1973():27-37. PubMed ID: 31016694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Polymerase Recognition of Threose Nucleic Acid Triphosphates Equipped with Diverse Chemical Functionalities.
    Li Q; Maola VA; Chim N; Hussain J; Lozoya-Colinas A; Chaput JC
    J Am Chem Soc; 2021 Oct; 143(42):17761-17768. PubMed ID: 34637287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recognition of threosyl nucleotides by DNA and RNA polymerases.
    Kempeneers V; Vastmans K; Rozenski J; Herdewijn P
    Nucleic Acids Res; 2003 Nov; 31(21):6221-6. PubMed ID: 14576309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XNA Synthesis and Reverse Transcription by Engineered Thermophilic Polymerases.
    Cozens C; Pinheiro VB
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e47. PubMed ID: 30039931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.