These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26860781)

  • 21. Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis.
    Cho SS; Yu M; Kim SH; Kwon ST
    Enzyme Microb Technol; 2014 Sep; 63():39-45. PubMed ID: 25039058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA-Catalyzed Polymerization of Deoxyribose, Threose, and Arabinose Nucleic Acids.
    Horning DP; Bala S; Chaput JC; Joyce GF
    ACS Synth Biol; 2019 May; 8(5):955-961. PubMed ID: 31042360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering polymerases for applications in synthetic biology.
    Nikoomanzar A; Chim N; Yik EJ; Chaput JC
    Q Rev Biophys; 2020 Jul; 53():e8. PubMed ID: 32715992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidating the Determinants of Polymerase Specificity by Microfluidic-Based Deep Mutational Scanning.
    Nikoomanzar A; Vallejo D; Chaput JC
    ACS Synth Biol; 2019 Jun; 8(6):1421-1429. PubMed ID: 31081325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding the substrate repertoire of a DNA polymerase by directed evolution.
    Fa M; Radeghieri A; Henry AA; Romesberg FE
    J Am Chem Soc; 2004 Feb; 126(6):1748-54. PubMed ID: 14871106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The emerging world of synthetic genetics.
    Chaput JC; Yu H; Zhang S
    Chem Biol; 2012 Nov; 19(11):1360-71. PubMed ID: 23177191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Threose Nucleic Acid Enzyme with RNA Ligase Activity.
    Wang Y; Wang Y; Song D; Sun X; Zhang Z; Li X; Li Z; Yu H
    J Am Chem Soc; 2021 Jun; 143(21):8154-8163. PubMed ID: 34028252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stepping towards highly flexible aptamers: enzymatic recognition studies of unlocked nucleic acid nucleotides.
    Dubois C; Campbell MA; Edwards SL; Wengel J; Veedu RN
    Chem Commun (Camb); 2012 Jun; 48(44):5503-5. PubMed ID: 22540128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
    Arnold E; Ding J; Hughes SH; Hostomsky Z
    Curr Opin Struct Biol; 1995 Feb; 5(1):27-38. PubMed ID: 7539708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An in vitro selection system for TNA.
    Ichida JK; Zou K; Horhota A; Yu B; McLaughlin LW; Szostak JW
    J Am Chem Soc; 2005 Mar; 127(9):2802-3. PubMed ID: 15740086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High fidelity TNA synthesis by Therminator polymerase.
    Ichida JK; Horhota A; Zou K; McLaughlin LW; Szostak JW
    Nucleic Acids Res; 2005; 33(16):5219-25. PubMed ID: 16157867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered Polymerases with Altered Substrate Specificity: Expression and Purification.
    Nikoomanzar A; Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2017 Jun; 69():4.75.1-4.75.20. PubMed ID: 28628207
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the processivity of a family B-type DNA polymerase of Thermococcus onnurineus and application to long PCR.
    Kim YJ; Lee HS; Kwon ST; Lee JH; Kang SG
    Biotechnol Lett; 2014 May; 36(5):985-92. PubMed ID: 24375236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensing domain and extension rate of a family B-type DNA polymerase determine the stalling at a deaminated base.
    Kim YJ; Cha SS; Lee HS; Ryu YG; Bae SS; Cho Y; Cho HS; Kim SJ; Kwon ST; Lee JH; Kang SG
    J Microbiol Biotechnol; 2008 Aug; 18(8):1377-85. PubMed ID: 18756097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An In Vitro Selection Protocol for Threose Nucleic Acid (TNA) Using DNA Display.
    Dunn MR; Chaput JC
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.8.1-19. PubMed ID: 24961723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general strategy for expanding polymerase function by droplet microfluidics.
    Larsen AC; Dunn MR; Hatch A; Sau SP; Youngbull C; Chaput JC
    Nat Commun; 2016 Apr; 7():11235. PubMed ID: 27044725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.
    Huber C; Marx A
    PLoS One; 2017; 12(8):e0183623. PubMed ID: 28832623
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus.
    Ppyun H; Kim I; Cho SS; Seo KJ; Yoon K; Kwon ST
    J Biotechnol; 2012 Dec; 164(2):363-70. PubMed ID: 23395617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and enzymatic incorporation of α-L-threofuranosyl adenine triphosphate (tATP).
    Zhang S; Chaput JC
    Bioorg Med Chem Lett; 2013 Mar; 23(5):1447-9. PubMed ID: 23352269
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA polymerase active site is highly mutable: evolutionary consequences.
    Patel PH; Loeb LA
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5095-100. PubMed ID: 10805772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.