These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 26860834)
1. Decoding power-spectral profiles from FMRI brain activities during naturalistic auditory experience. Hu X; Guo L; Han J; Liu T Brain Imaging Behav; 2017 Feb; 11(1):253-263. PubMed ID: 26860834 [TBL] [Abstract][Full Text] [Related]
2. Decoding Auditory Saliency from Brain Activity Patterns during Free Listening to Naturalistic Audio Excerpts. Zhao S; Han J; Jiang X; Huang H; Liu H; Lv J; Guo L; Liu T Neuroinformatics; 2018 Oct; 16(3-4):309-324. PubMed ID: 29488069 [TBL] [Abstract][Full Text] [Related]
3. On application of kernel PCA for generating stimulus features for fMRI during continuous music listening. Tsatsishvili V; Burunat I; Cong F; Toiviainen P; Alluri V; Ristaniemi T J Neurosci Methods; 2018 Jun; 303():1-6. PubMed ID: 29596859 [TBL] [Abstract][Full Text] [Related]
4. Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. Toiviainen P; Alluri V; Brattico E; Wallentin M; Vuust P Neuroimage; 2014 Mar; 88():170-80. PubMed ID: 24269803 [TBL] [Abstract][Full Text] [Related]
5. The effect of spatial resolution on decoding accuracy in fMRI multivariate pattern analysis. Gardumi A; Ivanov D; Hausfeld L; Valente G; Formisano E; Uludağ K Neuroimage; 2016 May; 132():32-42. PubMed ID: 26899782 [TBL] [Abstract][Full Text] [Related]
6. A studyforrest extension, MEG recordings while watching the audio-visual movie "Forrest Gump". Liu X; Dai Y; Xie H; Zhen Z Sci Data; 2022 May; 9(1):206. PubMed ID: 35562378 [TBL] [Abstract][Full Text] [Related]
7. Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis. Cong F; Puoliväli T; Alluri V; Sipola T; Burunat I; Toiviainen P; Nandi AK; Brattico E; Ristaniemi T J Neurosci Methods; 2014 Feb; 223():74-84. PubMed ID: 24333752 [TBL] [Abstract][Full Text] [Related]
9. A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Hanke M; Baumgartner FJ; Ibe P; Kaule FR; Pollmann S; Speck O; Zinke W; Stadler J Sci Data; 2014; 1():140003. PubMed ID: 25977761 [TBL] [Abstract][Full Text] [Related]
10. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results]. Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216 [TBL] [Abstract][Full Text] [Related]
11. Auditory perception and syntactic cognition: brain activity-based decoding within and across subjects. Herrmann B; Maess B; Kalberlah C; Haynes JD; Friederici AD Eur J Neurosci; 2012 May; 35(9):1488-96. PubMed ID: 22507458 [TBL] [Abstract][Full Text] [Related]
12. Decoding natural images from evoked brain activities using encoding models with invertible mapping. Li C; Xu J; Liu B Neural Netw; 2018 Sep; 105():227-235. PubMed ID: 29870930 [TBL] [Abstract][Full Text] [Related]
13. Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and "visual" brain regions. Dormal G; Rezk M; Yakobov E; Lepore F; Collignon O Neuroimage; 2016 Jul; 134():630-644. PubMed ID: 27107468 [TBL] [Abstract][Full Text] [Related]
14. Novel approach for understanding the neural mechanisms of auditory-motor control: pitch regulation by finger force. Tachibana RO; Yanagida M; Riquimaroux H Neurosci Lett; 2010 Oct; 482(3):198-202. PubMed ID: 20654698 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of brain activity underlying working memory for music in a naturalistic condition. Burunat I; Alluri V; Toiviainen P; Numminen J; Brattico E Cortex; 2014 Aug; 57():254-69. PubMed ID: 24949579 [TBL] [Abstract][Full Text] [Related]
16. Modeling an auditory stimulated brain under altered states of consciousness using the generalized Ising model. Kandeepan S; Rudas J; Gomez F; Stojanoski B; Valluri S; Owen AM; Naci L; Nichols ES; Soddu A Neuroimage; 2020 Dec; 223():117367. PubMed ID: 32931944 [TBL] [Abstract][Full Text] [Related]
17. From Vivaldi to Beatles and back: predicting lateralized brain responses to music. Alluri V; Toiviainen P; Lund TE; Wallentin M; Vuust P; Nandi AK; Ristaniemi T; Brattico E Neuroimage; 2013 Dec; 83():627-36. PubMed ID: 23810975 [TBL] [Abstract][Full Text] [Related]
18. The reliability of continuous brain responses during naturalistic listening to music. Burunat I; Toiviainen P; Alluri V; Bogert B; Ristaniemi T; Sams M; Brattico E Neuroimage; 2016 Jan; 124(Pt A):224-231. PubMed ID: 26364862 [TBL] [Abstract][Full Text] [Related]
19. Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception. Li Y; Long J; Huang B; Yu T; Wu W; Liu Y; Liang C; Sun P Cereb Cortex; 2015 Feb; 25(2):384-95. PubMed ID: 23978654 [TBL] [Abstract][Full Text] [Related]
20. Pre-attentive spectro-temporal feature processing in the human auditory system. Zaehle T; Jancke L; Herrmann CS; Meyer M Brain Topogr; 2009 Sep; 22(2):97-108. PubMed ID: 19266276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]