BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 26860944)

  • 1. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.
    Das S; Dash HR; Chakraborty J
    Appl Microbiol Biotechnol; 2016 Apr; 100(7):2967-84. PubMed ID: 26860944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments.
    Nascimento AM; Chartone-Souza E
    Genet Mol Res; 2003 Mar; 2(1):92-101. PubMed ID: 12917805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management.
    Dhuldhaj UP; Yadav IC; Singh S; Sharma NK
    Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation of mercury: not properly exploited in contaminated soils!
    Mahbub KR; Bahar MM; Labbate M; Krishnan K; Andrews S; Naidu R; Megharaj M
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):963-976. PubMed ID: 28074219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead absorption mechanisms in bacteria as strategies for lead bioremediation.
    Tiquia-Arashiro SM
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5437-5444. PubMed ID: 29736824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury.
    Teschke R
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored bacteria tackling with environmental mercury: Inspired by natural mercuric detoxification operons.
    Hui CY; Ma BC; Hu SY; Wu C
    Environ Pollut; 2024 Jan; 341():123016. PubMed ID: 38008253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of Metal-Resistant and Tensoactive-Producing Culturable Heterotrophic Bacteria Isolated from a Copper Mine in Brazilian Amazonia.
    Domingues VS; de Souza Monteiro A; Júlio ADL; Queiroz ALL; Dos Santos VL
    Sci Rep; 2020 Apr; 10(1):6171. PubMed ID: 32277075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury bioremediation by mercury resistance transposon-mediated in situ molecular breeding.
    Matsui K; Endo G
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3037-3048. PubMed ID: 29479648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation potential of new cadmium, chromium, and nickel-resistant bacteria isolated from tropical agricultural soil.
    Minari GD; Saran LM; Lima Constancio MT; Correia da Silva R; Rosalen DL; José de Melo W; Carareto Alves LM
    Ecotoxicol Environ Saf; 2020 Nov; 204():111038. PubMed ID: 32739674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals.
    Giovanella P; Cabral L; Costa AP; de Oliveira Camargo FA; Gianello C; Bento FM
    Ecotoxicol Environ Saf; 2017 Jun; 140():162-169. PubMed ID: 28259060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxic and essential trace metals in first baby haircuts and mother hair from Imam Hossein Hospital Tehran, Iran.
    Savabieasfahani M; Hoseiny M; Goodarzi S
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):140-4. PubMed ID: 22139296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Metal-Scavengers Newly Isolated from Indonesian Gold Mine-Impacted Area: Bacillus altitudinis MIM12 as Novel Tools for Bio-Transformation of Mercury.
    Harsonowati W; Rahayuningsih S; Yuniarti E; Susilowati DN; Manohara D; Sipriyadi ; Widyaningsih S; Akhdiya A; Suryadi Y; Tentrem T
    Microb Ecol; 2023 Oct; 86(3):1646-1660. PubMed ID: 36930295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury.
    De J; Ramaiah N; Vardanyan L
    Mar Biotechnol (NY); 2008; 10(4):471-7. PubMed ID: 18288535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of arsenic and its resistance in nature.
    Kaur S; Kamli MR; Ali A
    Can J Microbiol; 2011 Oct; 57(10):769-74. PubMed ID: 21936668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbes in heavy metal remediation.
    Rajendran P; Muthukrishnan J; Gunasekaran P
    Indian J Exp Biol; 2003 Sep; 41(9):935-44. PubMed ID: 15242287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Overview of Bacteria-Mediated Heavy Metal Bioremediation Strategies.
    Roy R; Samanta S; Pandit S; Naaz T; Banerjee S; Rawat JM; Chaubey KK; Saha RP
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1712-1751. PubMed ID: 37410353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Bioremediation of heavy metal pollution by edible fungi: a review].
    Liu JF; Hu LJ; Liao DX; Su SM; Zhou ZK; Zhang S
    Ying Yong Sheng Tai Xue Bao; 2011 Feb; 22(2):543-8. PubMed ID: 21608273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation.
    Priyadarshanee M; Chatterjee S; Rath S; Dash HR; Das S
    J Hazard Mater; 2022 Feb; 423(Pt A):126985. PubMed ID: 34464861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.