These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 26860944)

  • 21. Characterization of the simultaneous degradation of pyrene and removal of Cr(VI) by a bacteria consortium YH.
    Su Y; Sun S; Liu Q; Zhao C; Li L; Chen S; Chen H; Wang Y; Tang F
    Sci Total Environ; 2022 Dec; 853():158388. PubMed ID: 36049693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthetic bacteria designed using ars operons: a promising solution for arsenic biosensing and bioremediation.
    Hui CY; Liu MQ; Guo Y
    World J Microbiol Biotechnol; 2024 May; 40(6):192. PubMed ID: 38709285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Possible use of Serratia marcescens in toxic metal biosorption (removal).
    Cristani M; Naccari C; Nostro A; Pizzimenti A; Trombetta D; Pizzimenti F
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):161-8. PubMed ID: 21701862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils.
    Turpeinen R; Kairesalo T; Häggblom MM
    FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Current researches in microbial remediation of arsenic pollution].
    Wu J; Xie MJ; Yang Q; Tu SX
    Huan Jing Ke Xue; 2011 Mar; 32(3):817-24. PubMed ID: 21634183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial tolerance and detoxification of cyanide, arsenic and heavy metals: Holistic approaches applied to bioremediation of industrial complex wastes.
    Olaya-Abril A; Biełło K; Rodríguez-Caballero G; Cabello P; Sáez LP; Moreno-Vivián C; Luque-Almagro VM; Roldán MD
    Microb Biotechnol; 2024 Jan; 17(1):e14399. PubMed ID: 38206076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Role of siderophore-producing and arsenic-resistant bacteria in arsenic-contaminated environment].
    Xia Q; Wang J; Wan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):450-454. PubMed ID: 32237539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenic Bioremediation by Indigenous Heavy Metal Resistant Bacteria of Fly Ash Pond.
    Roychowdhury R; Roy M; Rakshit A; Sarkar S; Mukherjee P
    Bull Environ Contam Toxicol; 2018 Oct; 101(4):527-535. PubMed ID: 30203177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenotypic and genomic analysis of multiple heavy metal-resistant Micrococcus luteus strain AS2 isolated from industrial waste water and its potential use in arsenic bioremediation.
    Sher S; Hussain SZ; Rehman A
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2243-2254. PubMed ID: 31927763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of chromium contaminated environments.
    Kamaludeen SP; Arunkumar KR; Avudainayagam S; Ramasamy K
    Indian J Exp Biol; 2003 Sep; 41(9):972-85. PubMed ID: 15242290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation of organic and metal contaminants with dissimilatory metal reduction.
    Lovley DR
    J Ind Microbiol; 1995 Feb; 14(2):85-93. PubMed ID: 7766214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.
    Mateos LM; Villadangos AF; de la Rubia AG; Mourenza A; Marcos-Pascual L; Letek M; Pedre B; Messens J; Gil JA
    Adv Appl Microbiol; 2017; 99():103-137. PubMed ID: 28438267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring.
    Naik MM; Dubey SK
    Ecotoxicol Environ Saf; 2013 Dec; 98():1-7. PubMed ID: 24144999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions.
    Liu S; Zhang F; Chen J; Sun G
    J Environ Sci (China); 2011; 23(9):1544-50. PubMed ID: 22432292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymes and operons mediating xenobiotic degradation in bacteria.
    Mishra V; Lal R; Srinivasan
    Crit Rev Microbiol; 2001; 27(2):133-66. PubMed ID: 11450853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attenuation of chromium toxicity by bioremediation technology.
    Mohanty M; Patra HK
    Rev Environ Contam Toxicol; 2011; 210():1-34. PubMed ID: 21170701
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal tolerant halophilic bacteria from Vembanad Lake as possible source for bioremediation of lead and cadmium.
    Sowmya M; Rejula MP; Rejith PG; Mohan M; Karuppiah M; Hatha AA
    J Environ Biol; 2014 Jul; 35(4):655-60. PubMed ID: 25004749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial heavy metal resistance: new surprises.
    Silver S; Phung LT
    Annu Rev Microbiol; 1996; 50():753-89. PubMed ID: 8905098
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Progress on microbial transformation of arsenic and its application in environmental and medical sciences--a review].
    Zhang X; Yu X; Xie Q; Li H
    Wei Sheng Wu Xue Bao; 2008 Mar; 48(3):408-12. PubMed ID: 18479072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems.
    Biddinger GR; Gloss SP
    Residue Rev; 1984; 91():103-45. PubMed ID: 6091200
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.