BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 26861018)

  • 1. Resolving the Complexity of Human Skin Metagenomes Using Single-Molecule Sequencing.
    Tsai YC; Conlan S; Deming C; ; Segre JA; Kong HH; Korlach J; Oh J
    mBio; 2016 Feb; 7(1):e01948-15. PubMed ID: 26861018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MinION™ nanopore sequencing of environmental metagenomes: a synthetic approach.
    Brown BL; Watson M; Minot SS; Rivera MC; Franklin RB
    Gigascience; 2017 Mar; 6(3):1-10. PubMed ID: 28327976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive investigation of metagenome assembly by linked-read sequencing.
    Zhang L; Fang X; Liao H; Zhang Z; Zhou X; Han L; Chen Y; Qiu Q; Li SC
    Microbiome; 2020 Nov; 8(1):156. PubMed ID: 33176883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes.
    Bertrand D; Shaw J; Kalathiyappan M; Ng AHQ; Kumar MS; Li C; Dvornicic M; Soldo JP; Koh JY; Tong C; Ng OT; Barkham T; Young B; Marimuthu K; Chng KR; Sikic M; Nagarajan N
    Nat Biotechnol; 2019 Aug; 37(8):937-944. PubMed ID: 31359005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.
    Somerville V; Lutz S; Schmid M; Frei D; Moser A; Irmler S; Frey JE; Ahrens CH
    BMC Microbiol; 2019 Jun; 19(1):143. PubMed ID: 31238873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal microbiota domination under extreme selective pressures characterized by metagenomic read cloud sequencing and assembly.
    Kang JB; Siranosian BA; Moss EL; Banaei N; Andermann TM; Bhatt AS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):585. PubMed ID: 31787070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking genome assembly methods on metagenomic sequencing data.
    Zhang Z; Yang C; Veldsman WP; Fang X; Zhang L
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36917471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes.
    Olson ND; Treangen TJ; Hill CM; Cepeda-Espinoza V; Ghurye J; Koren S; Pop M
    Brief Bioinform; 2019 Jul; 20(4):1140-1150. PubMed ID: 28968737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing.
    Tao Y; Xun F; Zhao C; Mao Z; Li B; Xing P; Wu QL
    Microbiol Spectr; 2023 Feb; 11(1):e0332822. PubMed ID: 36475839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and Annotation of Viral Metagenomes from Short-Read Sequencing Data.
    Mangalea MR; Keift K; Duerkop BA; Anantharaman K
    Methods Mol Biol; 2023; 2649():317-337. PubMed ID: 37258871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
    Walsh AM; Crispie F; O'Sullivan O; Finnegan L; Claesson MJ; Cotter PD
    Microbiome; 2018 Mar; 6(1):50. PubMed ID: 29554948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-resolved metagenomics using environmental and clinical samples.
    Kayani MUR; Huang W; Feng R; Chen L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid, ultra-deep metagenomic sequencing enables genomic and functional characterization of low-abundance species in the human gut microbiome.
    Jin H; You L; Zhao F; Li S; Ma T; Kwok LY; Xu H; Sun Z
    Gut Microbes; 2022; 14(1):2021790. PubMed ID: 35067170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing large metagenomic regions through long DNA fragment hybridization capture.
    Gasc C; Peyret P
    Microbiome; 2017 Mar; 5(1):33. PubMed ID: 28292322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes.
    Patin NV; Goodwin KD
    mSystems; 2022 Dec; 7(6):e0059522. PubMed ID: 36448813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and application of pseudo-long reads for metagenome assembly.
    Sim M; Lee J; Wy S; Park N; Lee D; Kwon D; Kim J
    Gigascience; 2022 May; 11():. PubMed ID: 35579554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and Analysis of Long-Read Metagenome-Assembled Genomes.
    Arumugam K; Bessarab I; Haryono MAS; Williams RBH
    Methods Mol Biol; 2023; 2649():235-259. PubMed ID: 37258866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SMRT sequencing only de novo assembly of the sugar beet (Beta vulgaris) chloroplast genome.
    Stadermann KB; Weisshaar B; Holtgräwe D
    BMC Bioinformatics; 2015 Sep; 16(1):295. PubMed ID: 26377912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing genomes recovered from time-series metagenomes using long- and short-read sequencing technologies.
    Orellana LH; Krüger K; Sidhu C; Amann R
    Microbiome; 2023 May; 11(1):105. PubMed ID: 37179340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.