These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 26861206)
1. Measuring the potential of individual airports for pandemic spread over the world airline network. Lawyer G BMC Infect Dis; 2016 Feb; 16():70. PubMed ID: 26861206 [TBL] [Abstract][Full Text] [Related]
2. [Public health measures at the airport of Hamburg during the early phase of pandemic influenza (H1N1) 2009]. Schlaich C; Sevenich C; Gau B Gesundheitswesen; 2012 Mar; 74(3):145-53. PubMed ID: 21305451 [TBL] [Abstract][Full Text] [Related]
3. Transmission and control of an emerging influenza pandemic in a small-world airline network. Hsu CI; Shih HH Accid Anal Prev; 2010 Jan; 42(1):93-100. PubMed ID: 19887149 [TBL] [Abstract][Full Text] [Related]
4. A global model for predicting the arrival of imported dengue infections. Liebig J; Jansen C; Paini D; Gardner L; Jurdak R PLoS One; 2019; 14(12):e0225193. PubMed ID: 31800583 [TBL] [Abstract][Full Text] [Related]
5. Modeling airport congestion contagion by heterogeneous SIS epidemic spreading on airline networks. Ceria A; Köstler K; Gobardhan R; Wang H PLoS One; 2021; 16(1):e0245043. PubMed ID: 33481799 [TBL] [Abstract][Full Text] [Related]
6. Airport quarantine inspection, follow-up observation, and the prevention of pandemic influenza. Fujita M; Sato H; Kaku K; Tokuno S; Kanatani Y; Suzuki S; Shinomiya N Aviat Space Environ Med; 2011 Aug; 82(8):782-9. PubMed ID: 21853856 [TBL] [Abstract][Full Text] [Related]
7. Modelling airport catchment areas to anticipate the spread of infectious diseases across land and air travel. Huber C; Watts A; Grills A; Yong JHE; Morrison S; Bowden S; Tuite A; Nelson B; Cetron M; Khan K Spat Spatiotemporal Epidemiol; 2021 Feb; 36():100380. PubMed ID: 33509428 [TBL] [Abstract][Full Text] [Related]
8. Entry and exit screening of airline travellers during the A(H1N1) 2009 pandemic: a retrospective evaluation. Khan K; Eckhardt R; Brownstein JS; Naqvi R; Hu W; Kossowsky D; Scales D; Arino J; MacDonald M; Wang J; Sears J; Cetron MS Bull World Health Organ; 2013 May; 91(5):368-76. PubMed ID: 23678200 [TBL] [Abstract][Full Text] [Related]
9. The propagation of European airports' on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic. Lin PC J Air Transp Manag; 2023 Jun; 109():102382. PubMed ID: 36909202 [TBL] [Abstract][Full Text] [Related]
10. Sampling for global epidemic models and the topology of an international airport network. Bobashev G; Morris RJ; Goedecke DM PLoS One; 2008 Sep; 3(9):e3154. PubMed ID: 18776932 [TBL] [Abstract][Full Text] [Related]
11. The impact of air travel on the precocity and severity of COVID-19 deaths in sub-national areas across 45 countries. Recchi E; Ferrara A; Rodriguez Sanchez A; Deutschmann E; Gabrielli L; Iacus S; Bastiani L; Spyratos S; Vespe M Sci Rep; 2022 Oct; 12(1):16522. PubMed ID: 36192435 [TBL] [Abstract][Full Text] [Related]
12. The impact of the COVID-19 pandemic on O-D flow and airport networks in the origin country and in Northeast Asia. Kuo PF; Brawiswa Putra IG; Setiawan FA; Wen TH; Chiu CS; Sulistyah UD J Air Transp Manag; 2022 May; 100():102192. PubMed ID: 35194345 [TBL] [Abstract][Full Text] [Related]
13. Analyzing Cross-country Pandemic Connectedness During COVID-19 Using a Spatial-Temporal Database: Network Analysis. Chu AM; Chan JN; Tsang JT; Tiwari A; So MK JMIR Public Health Surveill; 2021 Mar; 7(3):e27317. PubMed ID: 33711799 [TBL] [Abstract][Full Text] [Related]
14. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. Brownstein JS; Wolfe CJ; Mandl KD PLoS Med; 2006 Sep; 3(10):e401. PubMed ID: 16968115 [TBL] [Abstract][Full Text] [Related]
15. Assessing the impact of airline travel on the geographic spread of pandemic influenza. Grais RF; Ellis JH; Glass GE Eur J Epidemiol; 2003; 18(11):1065-72. PubMed ID: 14620941 [TBL] [Abstract][Full Text] [Related]
16. Quantitative method for resilience assessment framework of airport network during COVID-19. Guo J; Li Y; Yang Z; Zhu X PLoS One; 2021; 16(12):e0260940. PubMed ID: 34860845 [TBL] [Abstract][Full Text] [Related]
17. Hub airport slot Re-allocation and subsidy policy to speed up air traffic recovery amid COVID-19 pandemic --- case on the Chinese airline market. Hou M; Wang K; Yang H J Air Transp Manag; 2021 Jun; 93():102047. PubMed ID: 36570793 [TBL] [Abstract][Full Text] [Related]
18. U.S. airport entry screening in response to pandemic influenza: modeling and analysis. Malone JD; Brigantic R; Muller GA; Gadgil A; Delp W; McMahon BH; Lee R; Kulesz J; Mihelic FM Travel Med Infect Dis; 2009 Jul; 7(4):181-91. PubMed ID: 19717097 [TBL] [Abstract][Full Text] [Related]
19. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model. Huang X; Clements AC; Williams G; Mengersen K; Tong S; Hu W Environ Res; 2016 Apr; 146():308-14. PubMed ID: 26799511 [TBL] [Abstract][Full Text] [Related]
20. Impact of pandemic control over airport economics: Reconciling public health with airport business through a streamlined approach in pandemic control. Chung LH J Air Transp Manag; 2015; 44():42-53. PubMed ID: 32572319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]