BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 26861307)

  • 1. Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies.
    Kawai S; Murata K
    Int J Mol Sci; 2016 Feb; 17(2):145. PubMed ID: 26861307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platform construction of molecular breeding for utilization of brown macroalgae.
    Takagi T; Kuroda K; Ueda M
    J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective production of fermentable sugars from brown macroalgae biomass.
    Wang D; Kim DH; Kim KH
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9439-9450. PubMed ID: 27687993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pretreatment and saccharification of red macroalgae to produce fermentable sugars.
    Yun EJ; Kim HT; Cho KM; Yu S; Kim S; Choi IG; Kim KH
    Bioresour Technol; 2016 Jan; 199():311-318. PubMed ID: 26276401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol.
    Takagi T; Sasaki Y; Motone K; Shibata T; Tanaka R; Miyake H; Mori T; Kuroda K; Ueda M
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6627-6636. PubMed ID: 28741083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium.
    Yun EJ; Lee S; Kim HT; Pelton JG; Kim S; Ko HJ; Choi IG; Kim KH
    Environ Microbiol; 2015 May; 17(5):1677-88. PubMed ID: 25156229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red macroalgae as a sustainable resource for bio-based products.
    Yun EJ; Choi IG; Kim KH
    Trends Biotechnol; 2015 May; 33(5):247-9. PubMed ID: 25818231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine macroalgae: an untapped resource for producing fuels and chemicals.
    Wei N; Quarterman J; Jin YS
    Trends Biotechnol; 2013 Feb; 31(2):70-7. PubMed ID: 23245657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae.
    Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI
    J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioethanol production from the macroalgae Sargassum spp.
    Borines MG; de Leon RL; Cuello JL
    Bioresour Technol; 2013 Jun; 138():22-9. PubMed ID: 23612158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentials of macroalgae as feedstocks for biorefinery.
    Jung KA; Lim SR; Kim Y; Park JM
    Bioresour Technol; 2013 May; 135():182-90. PubMed ID: 23186669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform.
    Enquist-Newman M; Faust AM; Bravo DD; Santos CN; Raisner RM; Hanel A; Sarvabhowman P; Le C; Regitsky DD; Cooper SR; Peereboom L; Clark A; Martinez Y; Goldsmith J; Cho MY; Donohoue PD; Luo L; Lamberson B; Tamrakar P; Kim EJ; Villari JL; Gill A; Tripathi SA; Karamchedu P; Paredes CJ; Rajgarhia V; Kotlar HK; Bailey RB; Miller DJ; Ohler NL; Swimmer C; Yoshikuni Y
    Nature; 2014 Jan; 505(7482):239-43. PubMed ID: 24291791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofuel production from Macroalgae: present scenario and future scope.
    V GS; M DK; Pugazhendi A; Bajhaiya AK; Gugulothu P; J RB
    Bioengineered; 2021 Dec; 12(2):9216-9238. PubMed ID: 34709971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation.
    Greetham D; Adams JM; Du C
    Sci Rep; 2020 Jun; 10(1):9728. PubMed ID: 32546695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on the biomass pretreatment and inhibitor removal methods as key-steps towards efficient macroalgae-based biohydrogen production.
    Shobana S; Kumar G; Bakonyi P; Saratale GD; Al-Muhtaseb AH; Nemestóthy N; Bélafi-Bakó K; Xia A; Chang JS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1341-1348. PubMed ID: 28602665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production.
    Yazdani P; Zamani A; Karimi K; Taherzadeh MJ
    Bioresour Technol; 2015 Jan; 176():196-202. PubMed ID: 25461003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.
    Yun EJ; Yu S; Kim S; Kim KH
    J Biotechnol; 2018 Mar; 270():12-20. PubMed ID: 29408675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of pH attenuates toxicity of a byproduct produced by an ethanologenic strain of Sphingomonas sp. A1 during ethanol fermentation from alginate.
    Fujii M; Yoshida S; Murata K; Kawai S
    Bioengineered; 2014; 5(1):38-44. PubMed ID: 24445222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered microbial platform for direct biofuel production from brown macroalgae.
    Wargacki AJ; Leonard E; Win MN; Regitsky DD; Santos CN; Kim PB; Cooper SR; Raisner RM; Herman A; Sivitz AB; Lakshmanaswamy A; Kashiyama Y; Baker D; Yoshikuni Y
    Science; 2012 Jan; 335(6066):308-13. PubMed ID: 22267807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and robust citramalate production from brown macroalgae using fast-growing Vibrio sp. dhg.
    Lee HK; Woo S; Baek D; Min M; Jung GY; Lim HG
    Bioresour Technol; 2024 Feb; 394():130304. PubMed ID: 38211713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.