These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26861321)

  • 21. Electric-field-coupled oscillators for collective electrochemical perception in biohybrid robotics.
    Kernbach S
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36130602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots.
    Renda F; Giorgio-Serchi F; Boyer F; Laschi C
    Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Observability analysis of DVL/PS aided INS for a maneuvering AUV.
    Klein I; Diamant R
    Sensors (Basel); 2015 Oct; 15(10):26818-37. PubMed ID: 26506356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory architectures for biologically inspired autonomous robotics.
    Higgins CM
    Biol Bull; 2001 Apr; 200(2):235-42. PubMed ID: 11341590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Object Recognition Based on Point Clouds in Underwater Environment with Global Descriptors: A Survey.
    Himri K; Ridao P; Gracias N
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. State of the Art of Underwater Active Optical 3D Scanners.
    Castillón M; Palomer A; Forest J; Ridao P
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visual inspection of sea bottom structures by an autonomous underwater vehicle.
    Foresti GL
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(5):691-705. PubMed ID: 18244834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy.
    Masmitja I; Gonzalez J; Galarza C; Gomariz S; Aguzzi J; Del Rio J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Guidance for Autonomous Underwater Vehicles in Confined Semistructured Environments.
    Milosevic Z; Fernandez RAS; Dominguez S; Rossi C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33348753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments.
    Ferrera M; Moras J; Trouvé-Peloux P; Creuze V
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30743993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics.
    Herrero H; Outón JL; Puerto M; Sallé D; López de Ipiña K
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28561750
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.
    Li X; Bilbao S; Martín-Wanton T; Bastos J; Rodriguez J
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28287468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Dynamically Reconfigurable Autonomous Underwater Robot for Karst Exploration: Design and Experiment.
    Dang T; Lapierre L; Zapata R; Ropars B; Gourmelen G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Distributed Data-Gathering Protocol Using AUV in Underwater Sensor Networks.
    Khan JU; Cho HS
    Sensors (Basel); 2015 Aug; 15(8):19331-50. PubMed ID: 26287189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring Re-Growth of Invasive Plants Using an Autonomous Surface Vessel.
    Codd-Downey R; Jenkin M; Dey BB; Zacher J; Blainey E; Andrews P
    Front Robot AI; 2020; 7():583416. PubMed ID: 33553245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cognitive architecture for robot self-consciousness.
    Chella A; Frixione M; Gaglio S
    Artif Intell Med; 2008 Oct; 44(2):147-54. PubMed ID: 18715770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mobile autonomous robots-Possibilities and limits].
    Maehle E; Brockmann W; Walthelm A
    Zentralbl Chir; 2002 Feb; 127(2):134-40. PubMed ID: 11894217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. State of the art in surgical robotics: clinical applications and technology challenges.
    Cleary K; Nguyen C
    Comput Aided Surg; 2001; 6(6):312-28. PubMed ID: 11954063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autonomy in robots and other agents.
    Smithers T
    Brain Cogn; 1997 Jun; 34(1):88-106. PubMed ID: 9209757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.