These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26861338)

  • 21. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.
    Kesterson MA; Luck JD; Sama MP
    Sensors (Basel); 2015 Dec; 15(12):31965-72. PubMed ID: 26694417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements.
    Maertens W; Nuyttens D; Sonck B
    Commun Agric Appl Biol Sci; 2005; 70(4):989-95. PubMed ID: 16628947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer.
    Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y
    Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of droplet size uniformity and selection of spray parameters based on the biological optimum particle size theory.
    Chen C; Li S; Wu X; Wang Y; Kang F
    Environ Res; 2022 Mar; 204(Pt B):112076. PubMed ID: 34555405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 2. LiDAR technique.
    Gregorio E; Torrent X; Planas S; Rosell-Polo JR
    Sci Total Environ; 2019 Oct; 687():967-977. PubMed ID: 31412500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of adjuvants on spray droplet size from hydraulic nozzles.
    Sijs R; Bonn D
    Pest Manag Sci; 2020 Oct; 76(10):3487-3494. PubMed ID: 31943769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the influence of air speed and liquid flow rate on the droplet size and homogeneity in pneumatic spraying.
    Balsari P; Grella M; Marucco P; Matta F; Miranda-Fuentes A
    Pest Manag Sci; 2019 Feb; 75(2):366-379. PubMed ID: 29920925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.
    Hewitt AJ; Solomon KR; Marshall EJ
    J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spray characterization of thermal fogging equipment typically used in vector control.
    Hoffmann WC; Walker TW; Fritz BK; Gwinn T; Smith VL; Szumlas D; Quinn B; Lan Y; Huang Y; Sykes D
    J Am Mosq Control Assoc; 2008 Dec; 24(4):550-9. PubMed ID: 19181064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of the spray application technology in bay laurel (Laurus nobilis).
    Nuyttens D; Braekman P; Foque D
    Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental characterization of multi-nozzle atomization interference for dust reduction between hydraulic supports at a fully mechanized coal mining face.
    Wang J; Zhou G; Wei X; Wang S
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10023-10036. PubMed ID: 30741384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of spray drift potential reduction for hollow-cone nozzles: Part 1. Classification using indirect methods.
    Torrent X; Gregorio E; Douzals JP; Tinet C; Rosell-Polo JR; Planas S
    Sci Total Environ; 2019 Nov; 692():1322-1333. PubMed ID: 31248581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms.
    de Snoo GR; de Wit PJ
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hooded broadcast sprayer for particle drift reduction.
    Canella Vieira B; Coura Oliveira M; Sousa Alves G; Golus JA; Schroeder K; Smeda RJ; Rector RJ; Kruger GR; Werle R
    Pest Manag Sci; 2022 Apr; 78(4):1519-1528. PubMed ID: 34964248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing the application of spot spray in Nanguo pear orchards: Effect of nozzle type, spray volume rate and adjuvant.
    Guo S; Yao W; Xu T; Ma H; Sun M; Chen C; Lan Y
    Pest Manag Sci; 2022 Aug; 78(8):3564-3575. PubMed ID: 35598076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collisions in fast droplet streams for the production of spherolyophilisates.
    Süverkrüp R; Eggerstedt SN; Gruner K; Kuschel M; Sommerfeld M; Lamprecht A
    Eur J Pharm Sci; 2013 Jul; 49(4):535-41. PubMed ID: 23707544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arthroscopic Airbrush-Assisted Cell Spraying for Cartilage Repair: Design, Development, and Characterization of Custom-Made Arthroscopic Spray Nozzles.
    Dijkstra K; Hendriks J; Karperien M; Vonk LA; Saris DBF
    Tissue Eng Part C Methods; 2017 Sep; 23(9):505-515. PubMed ID: 28683651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Droplet size measurements for spray dryer scale-up.
    Thybo P; Hovgaard L; Andersen SK; Lindeløv JS
    Pharm Dev Technol; 2008; 13(2):93-104. PubMed ID: 18379901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurements of droplet size distribution and analysis of nasal spray atomization from different actuation pressure.
    Inthavong K; Fung MC; Yang W; Tu J
    J Aerosol Med Pulm Drug Deliv; 2015 Feb; 28(1):59-67. PubMed ID: 24914675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of the spray droplets and spray pattern by means of innovative optical microscopy measurement method with the high-speed camera.
    Koračin N; Zupančič M; Vrečer F; Hudovornik G; Golobič I
    Int J Pharm; 2022 Dec; 629():122412. PubMed ID: 36403892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.