These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26861615)

  • 21. Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO2 Using Ionic Liquid Gel Electrolytes.
    Shen B; Lang J; Guo R; Zhang X; Yan X
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25378-89. PubMed ID: 26502031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications.
    Coelho J; Correia RF; Silvestre S; Pinheiro T; Marques AC; Correia MRP; Pinto JV; Fortunato E; Martins R
    Mikrochim Acta; 2022 Dec; 190(1):40. PubMed ID: 36585475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sand-Milling Fabrication of Screen-Printable Graphene Composite Inks for High-Performance Planar Micro-Supercapacitors.
    Chen H; Chen S; Zhang Y; Ren H; Hu X; Bai Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56319-56329. PubMed ID: 33280375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crumpled Nitrogen-Doped Graphene for Supercapacitors with High Gravimetric and Volumetric Performances.
    Wang J; Ding B; Xu Y; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22284-91. PubMed ID: 26399912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed
    Yuan M; Luo F; Wang Z; Li H; Rao Y; Yu J; Wang Y; Xie D; Chen X; Wong CP
    ACS Appl Mater Interfaces; 2021 May; 13(19):22426-22437. PubMed ID: 33957749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance.
    Pei Z; Hu H; Liang G; Ye C
    Nanomicro Lett; 2017; 9(2):19. PubMed ID: 30460315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.
    Yu W; Zhou H; Li BQ; Ding S
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4597-4604. PubMed ID: 28094916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible, Stretchable, and Transparent Planar Microsupercapacitors Based on 3D Porous Laser-Induced Graphene.
    Song W; Zhu J; Gan B; Zhao S; Wang H; Li C; Wang J
    Small; 2018 Jan; 14(1):. PubMed ID: 29148212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser-Induced Interdigital Structured Graphene Electrodes Based Flexible Micro-Supercapacitor for Efficient Peak Energy Storage.
    Ray A; Roth J; Saruhan B
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully inkjet printed ultrathin microsupercapacitors based on graphene electrodes and a nano-graphene oxide electrolyte.
    Sollami Delekta S; Adolfsson KH; Benyahia Erdal N; Hakkarainen M; Östling M; Li J
    Nanoscale; 2019 May; 11(21):10172-10177. PubMed ID: 31107494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High Performance Na-O
    Munuera JM; Paredes JI; Enterría M; Villar-Rodil S; Kelly AG; Nalawade Y; Coleman JN; Rojo T; Ortiz-Vitoriano N; Martínez-Alonso A; Tascón JMD
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):494-506. PubMed ID: 31825208
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage devices.
    Wang Y; Shi Y; Zhao CX; Wong JI; Sun XW; Yang HY
    Nanotechnology; 2014 Mar; 25(9):094010. PubMed ID: 24522166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aqueous MXene inks for inkjet-printing microsupercapacitors with ultrahigh energy densities.
    Wang G; Zhang R; Zhang H; Cheng K
    J Colloid Interface Sci; 2023 Sep; 645():359-370. PubMed ID: 37156144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-Chip Asymmetric Microsupercapacitors Combining Reduced Graphene Oxide and Manganese Oxide for High Energy-Power Tradeoff.
    Agrawal R; Wang C
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials.
    Kong D; Le LT; Li Y; Zunino JL; Lee W
    Langmuir; 2012 Sep; 28(37):13467-72. PubMed ID: 22924965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film.
    Liu W; Lu C; Wang X; Tay RY; Tay BK
    ACS Nano; 2015 Feb; 9(2):1528-42. PubMed ID: 25560268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors.
    Song Y; Feng DY; Liu TY; Li Y; Liu XX
    Nanoscale; 2015 Feb; 7(8):3581-7. PubMed ID: 25631619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage.
    Lee B; Lee C; Liu T; Eom K; Chen Z; Noda S; Fuller TF; Jang HD; Lee SW
    Nanoscale; 2016 Jun; 8(24):12330-8. PubMed ID: 27273722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible and stackable laser-induced graphene supercapacitors.
    Peng Z; Lin J; Ye R; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3414-9. PubMed ID: 25584857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gravure Printing of Graphite-Based Anodes for Lithium-Ion Printed Batteries.
    Montanino M; De Girolamo Del Mauro A; Paoletti C; Sico G
    Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.