BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 26861789)

  • 1. How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure.
    Wulff P; Thomas C; Sargent F; Armstrong FA
    J Biol Inorg Chem; 2016 Mar; 21(1):121-34. PubMed ID: 26861789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance.
    Evans RM; Krahn N; Murphy BJ; Lee H; Armstrong FA; Söll D
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-engineering a NiFe hydrogenase to increase the H2 production bias while maintaining native levels of O2 tolerance.
    Flanagan LA; Wright JJ; Roessler MM; Moir JW; Parkin A
    Chem Commun (Camb); 2016 Jul; 52(58):9133-6. PubMed ID: 27055899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved Histidine Adjacent to the Proximal Cluster Tunes the Anaerobic Reductive Activation of
    Flanagan LA; Chidwick HS; Walton J; Moir JWB; Parkin A
    ChemElectroChem; 2018 Mar; 5(6):855-860. PubMed ID: 29696103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo modeling of the F(420)-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy.
    Mills DJ; Vitt S; Strauss M; Shima S; Vonck J
    Elife; 2013 Mar; 2():e00218. PubMed ID: 23483797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of chalcogenides in O
    Yang X; Darensbourg MY
    Chem Sci; 2020 Aug; 11(35):9366-9377. PubMed ID: 34094202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases.
    Flanagan LA; Parkin A
    Biochem Soc Trans; 2016 Feb; 44(1):315-28. PubMed ID: 26862221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.
    Kalms J; Schmidt A; Frielingsdorf S; van der Linden P; von Stetten D; Lenz O; Carpentier P; Scheerer P
    Angew Chem Int Ed Engl; 2016 Apr; 55(18):5586-90. PubMed ID: 26913499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage.
    Hansen M; Perner M
    Front Microbiol; 2016; 7():99. PubMed ID: 26903978
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Joseph Srinivasan S; Cleary SE; Ramirez MA; Reeve HA; Paul CE; Vincent KA
    Angew Chem Weinheim Bergstr Ger; 2021 Jun; 133(25):13943-13947. PubMed ID: 38529476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for bacterial energy extraction from atmospheric hydrogen.
    Grinter R; Kropp A; Venugopal H; Senger M; Badley J; Cabotaje PR; Jia R; Duan Z; Huang P; Stripp ST; Barlow CK; Belousoff M; Shafaat HS; Cook GM; Schittenhelm RB; Vincent KA; Khalid S; Berggren G; Greening C
    Nature; 2023 Mar; 615(7952):541-547. PubMed ID: 36890228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenase and Nitrogenase: Key Catalysts in Biohydrogen Production.
    Xuan J; He L; Wen W; Feng Y
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of carbon monoxide dehydrogenase orientation by site-specific immobilization enables direct electrical contact between enzyme cofactor and solid surface.
    Reginald SS; Lee H; Fazil N; Sharif B; Lee M; Kim MJ; Beyenal H; Chang IS
    Commun Biol; 2022 Apr; 5(1):390. PubMed ID: 35474238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E. coli Nickel-Iron Hydrogenase 1 Catalyses Non-native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene-reductases*.
    Joseph Srinivasan S; Cleary SE; Ramirez MA; Reeve HA; Paul CE; Vincent KA
    Angew Chem Int Ed Engl; 2021 Jun; 60(25):13824-13828. PubMed ID: 33721401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM structures reveal intricate Fe-S cluster arrangement and charging in Rhodobacter capsulatus formate dehydrogenase.
    Radon C; Mittelstädt G; Duffus BR; Bürger J; Hartmann T; Mielke T; Teutloff C; Leimkühler S; Wendler P
    Nat Commun; 2020 Apr; 11(1):1912. PubMed ID: 32313256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hup-Type Hydrogenases of Purple Bacteria: Homology Modeling and Computational Assessment of Biotechnological Potential.
    Abdullatypov AV
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31935912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete Protection of O
    Li H; Buesen D; Dementin S; Léger C; Fourmond V; Plumeré N
    J Am Chem Soc; 2019 Oct; 141(42):16734-16742. PubMed ID: 31525046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of hydrogenase-2 from
    Beaton SE; Evans RM; Finney AJ; Lamont CM; Armstrong FA; Sargent F; Carr SB
    Biochem J; 2018 Apr; 475(7):1353-1370. PubMed ID: 29555844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NiFe Hydrogenases of the Tetrachloroethene-Respiring Epsilonproteobacterium
    Kruse S; Goris T; Wolf M; Wei X; Diekert G
    Front Microbiol; 2017; 8():444. PubMed ID: 28373866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular electrode assemblies for bioelectrochemistry.
    Laftsoglou T; Jeuken LJC
    Chem Commun (Camb); 2017 Mar; 53(27):3801-3809. PubMed ID: 28317998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.