BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 26861803)

  • 1. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Injury; 2016 May; 47(5):1042-50. PubMed ID: 26861803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary blast injury to the eye and orbit: finite element modeling.
    Rossi T; Boccassini B; Esposito L; Clemente C; Iossa M; Placentino L; Bonora N
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8057-66. PubMed ID: 23111614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical assessment of brain dynamic responses due to blast pressure waves.
    Chafi MS; Karami G; Ziejewski M
    Ann Biomed Eng; 2010 Feb; 38(2):490-504. PubMed ID: 19806456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing the influences of different Intraocular Pressures on the human eye components using computational fluid-structure interaction model.
    Karimi A; Razaghi R; Navidbakhsh M; Sera T; Kudo S
    Technol Health Care; 2017; 25(2):285-297. PubMed ID: 27911345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study to determine the optimal intravitreal injection angle to the eye: A computational fluid-structure interaction model.
    Karimi A; Razaghi R; Biglari H; Sabbaghi H; Sera T; Kudo S
    Technol Health Care; 2018; 26(3):483-498. PubMed ID: 29710740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a finite element model for blast injuries to the pig mandible and a preliminary biomechanical analysis.
    Lei T; Xie L; Tu W; Chen Y; Tan Y
    J Trauma Acute Care Surg; 2012 Oct; 73(4):902-7. PubMed ID: 22902731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A computational model of blast loading on the human eye.
    Bhardwaj R; Ziegler K; Seo JH; Ramesh KT; Nguyen TD
    Biomech Model Mechanobiol; 2014 Jan; 13(1):123-40. PubMed ID: 23591604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of globe rupture caused by primary blast: a finite element analysis.
    Liu X; Wang L; Wang C; Fan J; Liu S; Fan Y
    Comput Methods Biomech Biomed Engin; 2015 Jul; 18(9):1024-1029. PubMed ID: 24661047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical simulation of eye-airbag impacts during vehicle accidents.
    Shirzadi H; Zohoor H; Naserkhaki S
    Proc Inst Mech Eng H; 2018 Jul; 232(7):699-707. PubMed ID: 29888654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling human eye under blast loading.
    Esposito L; Clemente C; Bonora N; Rossi T
    Comput Methods Biomech Biomed Engin; 2015; 18(2):107-15. PubMed ID: 23521031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element model of ocular injury in abusive head trauma.
    Rangarajan N; Kamalakkannan SB; Hasija V; Shams T; Jenny C; Serbanescu I; Ho J; Rusinek M; Levin AV
    J AAPOS; 2009 Aug; 13(4):364-9. PubMed ID: 19419890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an FE model of the rat head subjected to air shock loading.
    Zhu F; Mao H; Dal Cengio Leonardi A; Wagner C; Chou C; Jin X; Bir C; Vandevord P; Yang KH; King AI
    Stapp Car Crash J; 2010 Nov; 54():211-25. PubMed ID: 21512910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models.
    Karimi A; Razaghi R; Girkin CA; Downs JC
    Injury; 2022 Apr; 53(4):1401-1415. PubMed ID: 35144807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical assessment of the human body response to a ground-level explosion.
    Sielicki PW; Gajewski T
    Comput Methods Biomech Biomed Engin; 2019 Feb; 22(2):180-205. PubMed ID: 30596518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathogenesis of retinal damage in blunt eye trauma: finite element modeling.
    Rossi T; Boccassini B; Esposito L; Iossa M; Ruggiero A; Tamburrelli C; Bonora N
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):3994-4002. PubMed ID: 21330659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical Evaluations of Ocular Injury Risk for Blast Loading.
    Notghi B; Bhardwaj R; Bailoor S; Thompson KA; Weaver AA; Stitzel JD; Nguyen TD
    J Biomech Eng; 2017 Aug; 139(8):. PubMed ID: 28617927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material properties and effect of preconditioning of human sclera, optic nerve, and optic nerve sheath.
    Park J; Shin A; Jafari S; Demer JL
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1353-1363. PubMed ID: 33877503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injury risk prediction from computational simulations of ocular blast loading.
    Weaver AA; Stitzel SM; Stitzel JD
    Biomech Model Mechanobiol; 2017 Apr; 16(2):463-477. PubMed ID: 27644440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
    Ganpule S; Alai A; Plougonven E; Chandra N
    Biomech Model Mechanobiol; 2013 Jun; 12(3):511-31. PubMed ID: 22832705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse.
    Bricker-Anthony C; Rex TS
    PLoS One; 2015; 10(7):e0131921. PubMed ID: 26148200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.