BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 26861872)

  • 1. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorogenic Assays for the Defatty-Acylase Activity of Sirtuins.
    Young Hong J; Cao J; Lin H
    Methods Mol Biol; 2019; 2009():129-136. PubMed ID: 31152400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes.
    Tanabe K; Liu J; Kato D; Kurumizaka H; Yamatsugu K; Kanai M; Kawashima SA
    Sci Rep; 2018 Feb; 8(1):2656. PubMed ID: 29422688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide-Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Real-Time Detection of Lysine Deacylation.
    Rooker DR; Klyubka Y; Gautam R; Tomat E; Buccella D
    Chembiochem; 2018 Mar; 19(5):496-504. PubMed ID: 29235227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Profiling of Sirtuin Deacylase Substrates Using a Chemical Proteomic Strategy and Validation by Fluorescent Labeling.
    Zhang S; Spiegelman NA; Lin H
    Methods Mol Biol; 2019; 2009():137-147. PubMed ID: 31152401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting sirtuin-catalyzed deacylation reactions using ³²P-labeled NAD and thin-layer chromatography.
    Zhu A; Su X; Lin H
    Methods Mol Biol; 2013; 1077():179-89. PubMed ID: 24014407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
    Smith BC; Denu JM
    J Biol Chem; 2007 Dec; 282(51):37256-65. PubMed ID: 17951578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins.
    Feldman JL; Baeza J; Denu JM
    J Biol Chem; 2013 Oct; 288(43):31350-6. PubMed ID: 24052263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Substrate Specificity of Sirtuins.
    Bheda P; Jing H; Wolberger C; Lin H
    Annu Rev Biochem; 2016 Jun; 85():405-29. PubMed ID: 27088879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrates for efficient fluorometric screening employing the NAD-dependent sirtuin 5 lysine deacylase (KDAC) enzyme.
    Madsen AS; Olsen CA
    J Med Chem; 2012 Jun; 55(11):5582-90. PubMed ID: 22583019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine.
    Jiang H; Khan S; Wang Y; Charron G; He B; Sebastian C; Du J; Kim R; Ge E; Mostoslavsky R; Hang HC; Hao Q; Lin H
    Nature; 2013 Apr; 496(7443):110-3. PubMed ID: 23552949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases.
    Roessler C; Tüting C; Meleshin M; Steegborn C; Schutkowski M
    J Med Chem; 2015 Sep; 58(18):7217-23. PubMed ID: 26308971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and biochemical functions of SIRT6.
    Pan PW; Feldman JL; Devries MK; Dong A; Edwards AM; Denu JM
    J Biol Chem; 2011 Apr; 286(16):14575-87. PubMed ID: 21362626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant Preparation, Biochemical Analysis, and Structure Determination of Sirtuin Family Histone/Protein Deacylases.
    Suenkel B; Steegborn C
    Methods Enzymol; 2016; 573():183-208. PubMed ID: 27372754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic control by sirtuins and other enzymes that sense NAD
    Anderson KA; Madsen AS; Olsen CA; Hirschey MD
    Biochim Biophys Acta Bioenerg; 2017 Dec; 1858(12):991-998. PubMed ID: 28947253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
    Du J; Jiang H; Lin H
    Biochemistry; 2009 Apr; 48(13):2878-90. PubMed ID: 19220062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants.
    Kalous KS; Wynia-Smith SL; Summers SB; Smith BC
    J Biol Chem; 2020 Jun; 295(25):8524-8536. PubMed ID: 32371394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition.
    Fischer F; Gertz M; Suenkel B; Lakshminarasimhan M; Schutkowski M; Steegborn C
    PLoS One; 2012; 7(9):e45098. PubMed ID: 23028781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HPLC-Based Enzyme Assays for Sirtuins.
    Hong JY; Zhang X; Lin H
    Methods Mol Biol; 2018; 1813():225-234. PubMed ID: 30097871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.