These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Variable selection for generalized canonical correlation analysis. Tenenhaus A; Philippe C; Guillemot V; Le Cao KA; Grill J; Frouin V Biostatistics; 2014 Jul; 15(3):569-83. PubMed ID: 24550197 [TBL] [Abstract][Full Text] [Related]
6. Sparse canonical correlation analysis from a predictive point of view. Wilms I; Croux C Biom J; 2015 Sep; 57(5):834-51. PubMed ID: 26147637 [TBL] [Abstract][Full Text] [Related]
7. Bidirectional extreme learning machine for regression problem and its learning effectiveness. Yang Y; Wang Y; Yuan X IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1498-505. PubMed ID: 24807932 [TBL] [Abstract][Full Text] [Related]
8. Potential risk factors associated with human encephalitis: application of canonical correlation analysis. Hamid JS; Meaney C; Crowcroft NS; Granerod J; Beyene J; BMC Med Res Methodol; 2011 Aug; 11():120. PubMed ID: 21859458 [TBL] [Abstract][Full Text] [Related]
9. An extension of the Canonical Correlation Analysis to the case of multiple observations of two groups of variables. Phlypo R; Congedo M Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1894-7. PubMed ID: 21096784 [TBL] [Abstract][Full Text] [Related]
10. Sparse Markov chain-based semi-supervised multi-instance multi-label method for protein function prediction. Han C; Chen J; Wu Q; Mu S; Min H J Bioinform Comput Biol; 2015 Oct; 13(5):1543001. PubMed ID: 26493682 [TBL] [Abstract][Full Text] [Related]
11. Adaptive contrast weighted learning for multi-stage multi-treatment decision-making. Tao Y; Wang L Biometrics; 2017 Mar; 73(1):145-155. PubMed ID: 27213913 [TBL] [Abstract][Full Text] [Related]
12. Variable selection for clustering with Gaussian mixture models. Maugis C; Celeux G; Martin-Magniette ML Biometrics; 2009 Sep; 65(3):701-9. PubMed ID: 19210744 [TBL] [Abstract][Full Text] [Related]
13. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation. Choi JY; Hwang H; Yamamoto M; Jung K; Woodward TS Psychometrika; 2017 Jun; 82(2):427-441. PubMed ID: 26856725 [TBL] [Abstract][Full Text] [Related]
14. A learning algorithm for adaptive canonical correlation analysis of several data sets. Vía J; Santamaría I; Pérez J Neural Netw; 2007 Jan; 20(1):139-52. PubMed ID: 17113263 [TBL] [Abstract][Full Text] [Related]
15. Generalized covariance-adjusted canonical correlation analysis with application to psychiatry. Kowalski J; Tu XM; Jia G; Perlis M; Frank E; Crits-Christoph P; Kupfer DJ Stat Med; 2003 Feb; 22(4):595-610. PubMed ID: 12590416 [TBL] [Abstract][Full Text] [Related]
16. Graph-based semisupervised learning. Culp M; Michailidis G IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):174-9. PubMed ID: 18000333 [TBL] [Abstract][Full Text] [Related]
17. Robust regularized kernel regression. Zhu J; Hoi SC; Lyu MR IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1639-44. PubMed ID: 19022733 [TBL] [Abstract][Full Text] [Related]
18. Incorporating covariates into integrated factor analysis of multi-view data. Li G; Jung S Biometrics; 2017 Dec; 73(4):1433-1442. PubMed ID: 28407218 [TBL] [Abstract][Full Text] [Related]
19. [Classification of pharmaceutical tablet with canonical variates analysis method in spectra analysis]. Cheng Z; Zhu AS Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):624-8. PubMed ID: 19455787 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of multiple variate selection methods from a biological perspective: a nutrigenomics case study. Tapp HS; Radonjic M; Kate Kemsley E; Thissen U Genes Nutr; 2012 Jul; 7(3):387-97. PubMed ID: 22382778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]