BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26862041)

  • 1. Fluid friction and wall viscosity of the 1D blood flow model.
    Wang XF; Nishi S; Matsukawa M; Ghigo A; Lagrée PY; Fullana JM
    J Biomech; 2016 Feb; 49(4):565-71. PubMed ID: 26862041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.
    Stojadinović B; Tenne T; Zikich D; Rajković N; Milošević N; Lazović B; Žikić D
    J Biomech; 2015 Nov; 48(15):3969-3974. PubMed ID: 26454712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of flow in a liquid-filled visco-elastic tube.
    Pontrelli G
    Med Biol Eng Comput; 2002 Sep; 40(5):550-6. PubMed ID: 12452416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of friction and nonlinearities on the separation of arterial waves into their forward and backward components.
    Pythoud F; Stergiopulos N; Bertram CD; Meister JJ
    J Biomech; 1996 Nov; 29(11):1419-23. PubMed ID: 8894922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study on the pressure and pulse wave propagation in viscoelastic vessel tubes-effects of liquid viscosity and tube stiffness.
    Ikenaga Y; Nishi S; Komagata Y; Saito M; Lagrée PY; Asada T; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2381-8. PubMed ID: 24158293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave propagation in a viscous fluid contained in an orthotropic elastic tube.
    Mirsky I
    Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the impact of arterial wall viscosity in pressure morphology by means of a simplified 1D model.
    Gabaldon Castillo F; Cymberknop LJ; Alfonso MR; Martinez Sartore M; Armentano RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2656-2658. PubMed ID: 28268868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical modeling of wave propagation phenomena: experimental determination of pulse wave velocity in viscous fluid-filled elastic tubes in a gravitation field.
    Žikić D; Stojadinović B; Nestorović Z
    Eur Biophys J; 2019 Jul; 48(5):407-411. PubMed ID: 31201474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new dynamic model for in vitro evaluation of intravascular devices.
    Baert EJ; Vandersteene J; Dewaele F; Vantilborgh A; Van Roost D; De Somer F
    Int J Artif Organs; 2019 Jan; 42(1):42-48. PubMed ID: 30394827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.