These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26862189)
1. Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Hurtado-Guerrero R Biochem Soc Trans; 2016 Feb; 44(1):61-7. PubMed ID: 26862189 [TBL] [Abstract][Full Text] [Related]
2. The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Wandall HH; Irazoqui F; Tarp MA; Bennett EP; Mandel U; Takeuchi H; Kato K; Irimura T; Suryanarayanan G; Hollingsworth MA; Clausen H Glycobiology; 2007 Apr; 17(4):374-87. PubMed ID: 17215257 [TBL] [Abstract][Full Text] [Related]
3. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Lira-Navarrete E; de Las Rivas M; Compañón I; Pallarés MC; Kong Y; Iglesias-Fernández J; Bernardes GJ; Peregrina JM; Rovira C; Bernadó P; Bruscolini P; Clausen H; Lostao A; Corzana F; Hurtado-Guerrero R Nat Commun; 2015 May; 6():6937. PubMed ID: 25939779 [TBL] [Abstract][Full Text] [Related]
4. Polypeptide GalNAc-Ts: from redundancy to specificity. de Las Rivas M; Lira-Navarrete E; Gerken TA; Hurtado-Guerrero R Curr Opin Struct Biol; 2019 Jun; 56():87-96. PubMed ID: 30703750 [TBL] [Abstract][Full Text] [Related]
5. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences. de Las Rivas M; Lira-Navarrete E; Daniel EJP; Compañón I; Coelho H; Diniz A; Jiménez-Barbero J; Peregrina JM; Clausen H; Corzana F; Marcelo F; Jiménez-Osés G; Gerken TA; Hurtado-Guerrero R Nat Commun; 2017 Dec; 8(1):1959. PubMed ID: 29208955 [TBL] [Abstract][Full Text] [Related]
6. The lectin domain of the polypeptide GalNAc transferase family of glycosyltransferases (ppGalNAc Ts) acts as a switch directing glycopeptide substrate glycosylation in an N- or C-terminal direction, further controlling mucin type O-glycosylation. Gerken TA; Revoredo L; Thome JJ; Tabak LA; Vester-Christensen MB; Clausen H; Gahlay GK; Jarvis DL; Johnson RW; Moniz HA; Moremen K J Biol Chem; 2013 Jul; 288(27):19900-14. PubMed ID: 23689369 [TBL] [Abstract][Full Text] [Related]
7. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). Kubota T; Shiba T; Sugioka S; Furukawa S; Sawaki H; Kato R; Wakatsuki S; Narimatsu H J Mol Biol; 2006 Jun; 359(3):708-27. PubMed ID: 16650853 [TBL] [Abstract][Full Text] [Related]
8. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane. Lackman JJ; Goth CK; Halim A; Vakhrushev SY; Clausen H; Petäjä-Repo UE Cell Signal; 2018 Jan; 42():184-193. PubMed ID: 29097258 [TBL] [Abstract][Full Text] [Related]
11. Glycosylation of α-dystroglycan: O-mannosylation influences the subsequent addition of GalNAc by UDP-GalNAc polypeptide N-acetylgalactosaminyltransferases. Tran DT; Lim JM; Liu M; Stalnaker SH; Wells L; Ten Hagen KG; Live D J Biol Chem; 2012 Jun; 287(25):20967-74. PubMed ID: 22549772 [TBL] [Abstract][Full Text] [Related]
12. Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase 1. Tenno M; Kézdy FJ; Elhammer AP; Kurosaka A Biochem Biophys Res Commun; 2002 Nov; 298(5):755-9. PubMed ID: 12419318 [TBL] [Abstract][Full Text] [Related]
14. Structural Analysis of a GalNAc-T2 Mutant Reveals an Induced-Fit Catalytic Mechanism for GalNAc-Ts. de Las Rivas M; Coelho H; Diniz A; Lira-Navarrete E; Compañón I; Jiménez-Barbero J; Schjoldager KT; Bennett EP; Vakhrushev SY; Clausen H; Corzana F; Marcelo F; Hurtado-Guerrero R Chemistry; 2018 Jun; 24(33):8382-8392. PubMed ID: 29601100 [TBL] [Abstract][Full Text] [Related]
15. Structural basis of carbohydrate transfer activity of UDP-GalNAc: Polypeptide N-acetylgalactosaminyltransferase 7. Yu C; Liang L; Yin Y Biochem Biophys Res Commun; 2019 Mar; 510(2):266-271. PubMed ID: 30685086 [TBL] [Abstract][Full Text] [Related]
16. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups. Yoshimura Y; Matsushita T; Fujitani N; Takegawa Y; Fujihira H; Naruchi K; Gao XD; Manri N; Sakamoto T; Kato K; Hinou H; Nishimura S Biochemistry; 2010 Jul; 49(28):5929-41. PubMed ID: 20540529 [TBL] [Abstract][Full Text] [Related]
17. The structure of the colorectal cancer-associated enzyme GalNAc-T12 reveals how nonconserved residues dictate its function. Fernandez AJ; Daniel EJP; Mahajan SP; Gray JJ; Gerken TA; Tabak LA; Samara NL Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20404-20410. PubMed ID: 31548401 [TBL] [Abstract][Full Text] [Related]
18. Polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) isozyme surface charge governs charge substrate preferences to modulate mucin type O-glycosylation. Ballard CJ; Paserba MR; Paul Daniel EJ; Hurtado-Guerrero R; Gerken TA Glycobiology; 2023 Oct; 33(10):817-836. PubMed ID: 37555669 [TBL] [Abstract][Full Text] [Related]
19. Role of peptide sequence and neighboring residue glycosylation on the substrate specificity of the uridine 5'-diphosphate-alpha-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyl transferases T1 and T2: kinetic modeling of the porcine and canine submaxillary gland mucin tandem repeats. Gerken TA; Tep C; Rarick J Biochemistry; 2004 Aug; 43(30):9888-900. PubMed ID: 15274643 [TBL] [Abstract][Full Text] [Related]
20. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. Gill DJ; Chia J; Senewiratne J; Bard F J Cell Biol; 2010 May; 189(5):843-58. PubMed ID: 20498016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]