These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Interconvertible enzyme cascades in cellular regulation. Chock PB; Rhee SG; Stadtman ER Annu Rev Biochem; 1980; 49():813-43. PubMed ID: 6105843 [No Abstract] [Full Text] [Related]
9. Response coefficients of interconvertible enzyme cascades towards effectors that act on one or both modifier enzymes. Szedlacsek SE; Cárdenas ML; Cornish-Bowden A Eur J Biochem; 1992 Mar; 204(2):807-13. PubMed ID: 1541294 [TBL] [Abstract][Full Text] [Related]
10. Allosteric regulation of monocyclic interconvertible enzyme cascade systems: use of Escherichia coli glutamine synthetase as an experimental model. Rhee SG; Park R; Chock PB; Stadtman ER Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3138-42. PubMed ID: 28522 [TBL] [Abstract][Full Text] [Related]
11. Energy expenditure in the control of biochemical systems by covalent modification. Goldbeter A; Koshland DE J Biol Chem; 1987 Apr; 262(10):4460-71. PubMed ID: 3558349 [TBL] [Abstract][Full Text] [Related]
12. Expressions for the fractional modification in different monocyclic enzyme cascade systems: analysis of their validity tested by numerical integration. Varón R; Valero E; Molina-Alarcón M; García-Cánovas F; García-Molina F; Fuentes ME; García-Moreno M Bull Math Biol; 2006 Oct; 68(7):1461-93. PubMed ID: 16868854 [TBL] [Abstract][Full Text] [Related]
13. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover. Reinhart GD Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263 [TBL] [Abstract][Full Text] [Related]
14. The role of metabolic memory in the ATP paradox and energy homeostasis. Aledo JC; Jiménez-Rivérez S; Cuesta-Munoz A; Romero JM FEBS J; 2008 Nov; 275(21):5332-42. PubMed ID: 18803663 [TBL] [Abstract][Full Text] [Related]
15. Steady-state kinetic formalism applied to multienzyme complexes, oxidative phosphorylation, and interacting enzymes. Hill TL Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4432-6. PubMed ID: 1069995 [TBL] [Abstract][Full Text] [Related]
16. A steady-state kinetic method for the verification of the rapid-equilibrium assumption in allosteric enzymes. Symcox MM; Reinhart GD Anal Biochem; 1992 Nov; 206(2):394-9. PubMed ID: 1443611 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of the transient-phase and steady-state of the monocyclic enzyme cascades. Varón R; Havsteen BH J Theor Biol; 1990 Jun; 144(3):397-413. PubMed ID: 2395378 [TBL] [Abstract][Full Text] [Related]
18. Characteristics necessary for an interconvertible enzyme cascade to generate a highly sensitive response to an effector. Cárdenas ML; Cornish-Bowden A Biochem J; 1989 Jan; 257(2):339-45. PubMed ID: 2930453 [TBL] [Abstract][Full Text] [Related]
19. Covalent modification and metabolic control analysis. Modification to the theorems and their application to metabolic systems containing covalently modifiable enzymes. Small JR; Fell DA Eur J Biochem; 1990 Jul; 191(2):405-11. PubMed ID: 2384088 [TBL] [Abstract][Full Text] [Related]
20. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell. Diederichs F Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]